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Abstract

We identify a new type of risk that is characterised by commonalities in the quantiles

of the cross-sectional distribution of asset returns. Our newly proposed quantile risk

factor is associated with a quantile-specific risk premium and provides new insights into

how upside and downside risks are priced by investors. In contrast to the previous lit-

erature, we recover the common structure in cross-sectional quantiles without making

confounding assumptions or aggregating potentially non-linear information. We dis-

cuss how the new quantile-based risk factor differs from popular volatility and downside

risk factors, and we identify where the quantile-dependent risks deserve greater com-

pensation. Quantile factors also have predictive power for aggregate market returns.
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1 Introduction

The question of how relevant the information contained in different parts of the return

distribution is to an investor has received considerable attention in the recent empirical

asset pricing literature (Ang et al., 2006; Van Oordt and Zhou, 2016; Chabi-Yo et al., 2018;

Lu and Murray, 2019), with number of studies focusing on the tails or extremes in the cross-

section of returns (Kelly and Jiang, 2014; Chabi-Yo et al., 2022). These studies typically rely

on assumptions about moment conditions as well as the existence of a model that generates

returns. In contrast to the literature, our aim is to use conditional quantiles of observed

returns to capture set of nonlinear factors that provide finer characterization of risk. In

particular, we want to explore the common, possibly non-linear movements in the panel of

the firm’s idiosyncratic quantiles. In doing so, we remain agnostic about the data generating

process. We believe that such structures provide richer information for investors than the

information that can be obtained by making assumptions about the moments. In particular,

we will identify where quantile-dependent risk exposures deserve greater compensation. Both

volatility and downside risk measures hide such details while aggregating information about

risk.

The information captured by quantile-dependent factors can be related to the behaviour

of investors with quantile preferences (de Castro and Galvao, 2019). Quantiles contain rich

information because they capture heterogeneity in risk and allow the separation of risk

aversion and elasticity of intertemporal substitution. Our main interest is to show that there

are strong common factors across quantiles of the cross-sectional distribution of asset returns

that are more informative about investors’ compensation requirements. We argue that such

risk is distinct from other types of risk associated with the distribution of returns, such as

downside risk or volatility risk. The quantile-dependent risk premia associated with such

factors are then used to generalise notion of upside risk and downside risk.

Just as quantile regression extends classical linear regression, our quantile factor model

of asset returns extends the approximate factor models used in the empirical asset pricing

literature. In the spirit of the popular Principal Component Analysis, which recovers the

conditional mean, we work with more general quantile factor models (QFMs). These are

flexible enough to capture quantile-dependent objects that cannot be captured by standard

tools. Unlike standard principal component analysis, quantile factor models are able to

capture hidden factors that shift distributional properties such as moments or quantiles.

Moreover, these factors can vary across the distribution of each unit in the panel, allowing

the factors to be properly inferred when the idiosyncratic error distributions have heavy

tails. Importantly, such factors differ from the usual mean and volatility factors when we
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abandon the traditional location and scale shift model structure and allow for more general,

possibly unknown, data generating processes. In effect, quantile-dependent risk is treated as

constant in factor models based on such assumptions. Downside risk models then aggregate

the quantiles, usually under some distributional assumption.

Our main contribution is to investigate the pricing implications of common non-linear

factors that are quantile specific for the predictability of aggregate market returns and the

cross-section of stock returns. We are interested in factors that identify the risk premium

associated with different quantiles of the return distribution in terms of both downside (or

tail) risk and upside potential. Our approach will identify new information about risk beyond

the usual moments associated with tail risks. To this end, we use the quantile factor model of

Chen et al. (2021) and investigate the pricing implications of quantile-dependent factors while

controlling for various linear factors and exposures to them. Our objective is also motivated

by the increasing evidence of non-linearities in equity markets.1 We aim to show that the

common quantile risk present in the stock return data carries different information from

the common volatility and downside risks. Our quantile dependent factors also carry strong

information for both the cross-section of asset returns and the time series predictability of

the equity premium.

We begin by identifying common factor structures in the idiosyncratic quantiles of stocks

in the Center for Research in Security Prices (CRSP) over a sample spanning 1960 to 2018.

We discuss the relationship with volatility and downside risk factors and show that quantile

factors have predictive power for aggregate market returns. Predictive regressions show that

a one standard deviation increase in quantile risk predicts a statistically significant increase

in annualised excess market returns of up to 7.05% in the case of the left tail. These results

hold out-of-sample, are stronger for the left tail, and are robust to controlling for a wide

range of popular predictors studied by Welch and Goyal (2007), as well as tail risk (Kelly

and Jiang, 2014), common volatility risk (Herskovic et al., 2016), and variance risk premium

(Bollerslev et al., 2009). We also document the predictive power of the upper tail factor with

a smaller effect of up to 3.50% increase in annualised returns, hence the effect is asymmetric.

Moreover, the predictive power of the upper tail factors disappears when looking at the

out-of-sample performance.

We also find that idiosyncratic quantile risk has significant predictive power for the cross-

section of average returns. We show that stocks with high loadings of past quantile risk in the

left tail earn up to an annual six-factor alpha of 8.57% higher than stocks with low tail risk

1E.g., Amengual and Sentana (2020) report a non-linear dependence structure in short-term reversals
and momentum. Ma et al. (2021) show that many firm-level characteristics have a complex relationship with
returns in terms of quantiles.
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loadings for 0.2 quantiles. This risk premium is not subsumed by other commonly priced

factors such as common volatility, tail and downside risk, and other popular risk factors.

Investors thus have a strong aversion to tail risk with respect to the common movements in

idiosyncratic returns. On the other hand, the absence of the risk premium associated with

the factors for the upper quantiles suggests that investors are not upside potential seekers.

Both results are consistent with the literature on the impact of asymmetric dependencies on

asset prices.

Our work is related to several strands of the literature. The first relates to the factor-

based asset pricing models that are very popular in the empirical pricing literature (Ross,

1976; Fama and French, 1993; Kelly et al., 2019). In sharp contrast to this literature, our

approach remains agnostic about the nature of the true data generating process and uses

the conditional quantiles of observed returns without imposing moment conditions.

The second strand to which we contribute is the study of idiosyncratic risk that co-moves

across assets, thus exploring common trends that are not captured by first moment factors.

The bulk of this research is motivated by the introduction of the idiosyncratic volatility puzzle

proposed by Ang et al. (2006a). Unfortunately, all existing explanations of the anomaly are

based on lottery preferences, market frictions or other factors2 only for 29-54% of the puzzle

using individual stocks Hou and Loh (2016).

The third line of thought that we take into account deals with asymmetric properties of

systematic risk and how they are incorporated into asset prices. Interest in this type of model

was reignited by Ang et al. (2006) and their introduction of downside beta, which captures

the covariance between asset and market returns conditional on the market being below some

threshold. Bollerslev et al. (2021) further decompose traditional market beta into semibetas,

which are characterised by the signed covariation between market and asset returns. They

show that only the semibetas associated with negative market and asset returns predict

significantly higher future returns. More recently, Bollerslev et al. (2022) argue that betas

are granular and associated with a risk premium that depends on the relevant part of the

return distributions.

From a theoretical point of view, there are many justifications for the departure from clas-

sical common factor pricing theory to the asymmetric forms of the utility function. Probably

the most relevant for our work is the dynamic quantile decision maker of de Castro and Gal-

vao (2019), who decides based on quantile dependent preferences. Barro (2006), building on

2For a comprehensive list of references belonging to each of these categories, see Hou and Loh (2016).
The only exception to this observation is the lottery-based explanation using the highest realised return from
the previous month, proposed by Bali et al. (2011) and confirmed in European markets by Annaert et al.
(2013). However, Hou and Loh (2016) argue that this explanation is not valid as it is an almost perfect
collinear range-based measure of idiosyncratic volatility.
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Rietz (1988), introduced the rare disaster model and showed that tail events may have signif-

icant ability to explain various asset pricing puzzles, such as the equity premium puzzle. The

other popular model that considers asymmetric features of risk is the generalised disappoint-

ment aversion model of Routledge and Zin (2010), which inherently assumes that investors

are downside averse. Based on these preferences, Farago and Tédongap (2018) introduced an

intertemporal equilibrium asset pricing model and showed that the disappointment-related

factors should be priced in the cross-section. Moreover, they prove that their model performs

well empirically by jointly pricing different asset classes with significant prices for the risk

associated with the disappointment factors.

There are also attempts to combine the two or three of these research agendas. Her-

skovic et al. (2016) introduced a risk factor based on the common volatility of firm-level

idiosyncratic returns, and showed its pricing capabilities for the cross section of different

asset classes. For example, Kelly and Jiang (2014); Allen et al. (2012); Jondeau et al. (2019)

explore the risks associated with skewness, tails and extremes. Giglio et al. (2016) estimate

quantile-specific latent factors using systemic risk and financial market distress variables to

predict macroeconomic activity. Much of the research investigating common tail risk and its

implications for asset pricing relies on options data. They argue that the tail factor identi-

fies additional information beyond the volatility factor. Andersen et al. (2020) show strong

predictive power for future equity risk premia in US and European equity index derivatives.

Bollerslev and Todorov (2011) combine high-frequency and options data and use a non-

parametric approach to conclude that a large part of the equity and variance risk premia is

related to jump tail risk.

The rest of the paper is structured as follows. Section 2 proposes the quantile factor model

for asset returns, discusses the methodology of estimating the quantile-specific factors and the

data we use, and provides the link to the volatility factors. Section 3 presents the results on

the time series predictability of the aggregate market return using the common idiosyncratic

quantile factors. Section 4 examines the cross-sectional asset pricing implications of the

proposed factors. Section 5 concludes.
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2 Common Idiosyncratic Quantile Factors

Researchers usually assume that time variation in equity returns can be captured by relatively

small number of common factors with following structure3

ri,t = αi + β>i ft + εi,t (1)

where ri,t is excess return of an asset i = 1, . . . , N at time t = 1, . . . , T , ft is a k × 1 vector

of common factors and βi is a k× 1 vector of the asset’s i exposures to the common factors.

Such time-series regressions as the one in (1) yielding high R2 are used to identify factors

serving as good proxies for aggregate risks present in the economy. Exposures to the relevant

factors captured by βi coefficients should be compensated in the equilibrium and explain the

risk premium of the assets

Et[ri,t+1] = β>i λt (2)

where the λt is a k× 1 vector of prices of risk associated with factor exposures. Importantly,

while the arbitrage pricing theory (APT) of Ross (1976) suggests that any common return

factors ft are valid candidate asset pricing factors, the idiosyncratic return residuals εi,t are

assumed not to be priced. This implication is due to many simplifying assumptions, such

that an average investor can perfectly diversify her portfolio or that the linear model (1) is

correctly specified.

In these models, only common return factors are valid candidate pricing factors, and

sensitivities to those factors determine the risk premium associated with an asset (Ross,

1976). This strand of literature yields highly successful and popular results focusing on

the parsimonious models (Fama and French, 1993), as well as exploration of statistically

motivated latent factors.4 Recently, Kelly et al. (2019) introduced instrumented principal

component analysis, which enables to flexibly model the latent factors with time-varying

loadings using the observable characteristics.5 In addition, Ma et al. (2021) introduced

3Recently, Lettau and Pelger (2020) introduce Risk-Premium Principal Component Analysis that allows
for systematic time-series factors incorporating information from the first and second moment.

4This approach dates back to Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986).
For a comprehensive overview of machine learning methods applied to asset pricing problems such as mea-
suring expected returns, estimating factors, risk premia, or stochastic discount factor, model selection, and
corresponding asymptotic theory, see Giglio et al. (2022).

5Other notable recent contributions to the factor literature are, e.g., Kozak et al. (2018) and Giglio
et al. (2021). The recent availability of high-frequency return data also motivated the development of
continuous-time factor models.Aı̈t-Sahalia et al. (2020) proposed a generalization of the classical two-pass
Fama-MacBeth regression from the classical discrete-time factor setting to a continuous-time factor model
and enables uncovering complex dynamics such as jump risk and its role in the expected returns.
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a semi-parametric quantile factor panel model that considers stock-specific characteristics,

which may non-linearly affect stock returns in a time-varying manner. They find that many

characteristics possess a non-linear effect on stock returns. In contrast to these authors, the

approach used in our paper is more general since it allows not only loadings but also factors

to be quantile-dependent. Moreover, our approach does not require the loadings to depend

on observables and has direct relation of the approximate factor models that are ubiquitous

in the finance literature.

While large literature have focused mainly on the diversification assumption, we aim

to question linear nature of the factor model, and our focus is on exposure to parts of id-

iosyncratic return’s distribution instead. Recently, Herskovic et al. (2016) documents strong

comovement in idiosyncratic volatility that does not arise from omitted factors, and even

after saturating the factor regression with up to ten principal components, residuals that are

virtually uncorrelated display same co-movement seen in raw returns.

While the exposure to common movements in volatility seem to carry strong pricing

implications, we ask if there exist additional structure insufficiently captured by volatilities

especially in a non-linear and heavy tailed financial data. In other words, we ask if various

parts of the return distributions may have pricing implications for the cross-section of stock

returns.6

In parallel to simple factor structure in idiosyncratic volatility of a panel of returns recov-

ered commonly by researchers (Ang et al., 2006b; Herskovic et al., 2016), we aim to recover

genuine unobserved structure in idiosyncratic quantiles. These quantities will be more infor-

mative for investors in case of the heavy-tailed nonlinear data in which the second moment

is not sufficient quantity for capturing risk. We will show the relation of quantile factors

to volatility under some specific model assumptions, relate the proposed factor model to

existing approaches recovering various factor structures from data and also provide a first

look at the quantile factor structures in cross-section of the U.S. stocks. Importantly, we will

show that our quantile dependent factors carry different information from the structure re-

covered using volatility or some popular downside risk measures that require certain moment

conditions to be met.

6Ando and Bai (2020) document that the common factor structures explaining the upper and lower tails
of the asset return distributions in global financial markets have become different since the subprime crisis.
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2.1 Quantile Factor Model

To formalize the discussion, we assume the panel of returns of length T and width N after

elimination of common mean factors from the time-series regression

ri,t = αi + β>i ft + εi,t (3)

to have τ -dependent structure ft(τ) in idiosyncratic errors that we coin common idiosyncratic

quantile – CIQ(τ) – factors, ft(τ)

Qεi,t

[
τ |ft(τ)

]
= γ>i (τ)ft(τ), (4)

that implies

εi,t = γ>i (τ)ft(τ) + ui,t(τ), (5)

where ft(τ) is an r(τ)× 1 vector of random common factors, and γi(τ) is r(τ)× 1 vector of

non-random factor loadings with r(τ) � N and the quantile-dependent idiosyncratic error

ui,t(τ) satisfies the quantile restriction P [ui,t(τ) < 0|ft(τ)] = τ almost surely for all τ ∈ (0, 1).

To estimate the common factors that capture co-movement of quantile-specific features of

distributions of the idiosyncratic parts of the stock returns, we use Quantile Factor Analysis

(QFA) introduced by Chen et al. (2021). In contrast to the principal component analysis

(PCA), QFA allows to capture hidden factors that may shift more general characteristics such

as moments or quantiles of the distribution of returns other than mean. The methodology is

also suitable for large panels and requires less strict assumptions about the data generating

process as we will discuss in detail here.

The quantile-dependent factors and its loadings can be estimated as

argmin
(γ1,...,γN ,f1,...,fT )

1

NT

N∑
i=1

T∑
t=1

ρτ
(
εit − γ>i ft

)
(6)

where ρτ (u) = (τ−1{u ≤ 0})u is the check function while imposing the following normaliza-

tions 1
T

∑T
t=1 ftf

>
t = Ir, and 1

N

∑N
i=1 γiγ

>
i is diagonal with non-increasing diagonal elements.

A potential problem that may arise in small samples is the so-called quantile crossing, that

is, the estimated quantiles are not guaranteed to be monotonic in τ . If this occurs, the

approach due to Chernozhukov et al. (2010) can be employed to establish monotonicity of

the estimated quantiles. In our empirical applications reported later, quantile crossing never

arises.
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As discussed in Chen et al. (2021), this estimator is related to the principal component

analysis (PCA) estimator studied in Bai and Ng (2002) and Bai (2003) similarly as quantile

regression is related to classical least-square regression. Unlike the PCA estimator of Bai

(2003), the estimator does not yield an analytical closed form solution. To solve for the

stationary points of the objective function, Chen et al. (2021) proposed a computational

algorithm called iterative quantile regression. Moreover, they show that the estimator possess

same convergence rate as the PCA estimators for approximate factor model. We follow their

approach when estimating the quantile factors.7

It is important here to make relation to the recent literature that attempts to recover

possibly non-linear commonalities and dependence structures in cross-section of returns. For

example Pelger and Xiong (2022) allowed factors to be state-dependent, Chen et al. (2009)

provided theory for nonlinear factors and Gorodnichenko and Ng (2017) estimated joint level

and volatility factors simultaneously. Important strand of the literature is using copulas

and documents nonlinear tail dependence, co-skewness, and co-kurtosis in cross-sectional

dependence among monthly returns on individual U.S. stocks (Amengual and Sentana, 2020)

or provides flexible copula factor model (Oh and Patton, 2017) .

Different from these studies, our model remains agnostic about the nature of the true

data generating process, and use the conditional quantiles of the observed data to capture

nonlinearities in factor models. In contrast to the literature, we also do not require the

idiosyncratic errors to satisfy certain moment conditions. Hence our approach is more flexible

as it estimates factors shifting relevant parts of the return distributions without restricting

assumptions, relying on the properties of the density. The approach also departs from

existing factor literature in not requiring the loadings to depend on observables and considers

the factors to be quantile-dependent objects.

2.2 Relation to common factors in volatility

Quantiles of stock returns can be related to variety of quantities as well as distributional

characteristics in specific cases. A specifically important quantity in finance that can relate to

quantiles of the return distribution for a typically assumed location-scale model is volatility.

As discussed by ample literature started by Ang et al. (2006b), there exists genuine factor

structure in the idiosyncratic volatility of panel of asset returns. Applying PCA (or cross-

sectional averages) to squared residuals, once mean factors have been removed from the

returns (a procedure labeled PCA-SQ hereafter) will recover that structure. We will use this

approach to study the relation to quantile specific factors on data, but before we do so, let’s

7We employ the authors’ Matlab codes provided on the Econometrica webpage.
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discuss the relation theoretically.

It is important to note that the volatility structure will be recovered only if the data-

generating process were to be known, and well characterized by the first two moments of the

distribution. Yet in case of more general, or even unknown data generating processes that will

not be well characterized by the first two moments, such approaches will fail to characterize

the risks precisely, and quantile factor models will estimate more useful information.

To illustrate the discussion and provide the link between volatility and quantiles in such

restrictive models, let’s consider the data generating process to be a typical location-scale

model with two unrelated factors in the first and second moments. Idiosyncratic returns εi,t

of such model will be zero mean i.i.d. process independent of both factors with cumulative

distribution function Fεi,t . Further let Qεi,t(τ) = F−1
εi,t

(τ) = inf{s : Fεi,t(s) ≤ τ} be a quantile

function of εi,t and assume the median is zero. Then the following model that is typical for

finance

ri,t = βif1,t + (σ>i,tf2,t)εi,t, (7)

where σi,t is time-varying volatility of an ith stock and σi,tf2,t > 0 can be assumed to generate

returns. When f1,t and f2,t do not share common elements, then

Qri,t

[
τ |ft(τ)

]
= βif1,t + σ>i,tf2,tQεi,t(τ) (8)

for τ 6= 0.5 and Qri,t

[
τ |ft(τ)

]
= βif1,t for τ = 0.5. Note that here loadings on the factor

are the only quantile-dependent objects and structure in the mean and volatility describes

well the structure in quantiles. While this is already restrictive example that operates with

the assumption on first two moments, even in such case standard PCA will not provide

consistent estimates if the distribution of εi,t is heavy-tailed (Chen et al., 2021).

But what if the data follows more complicated models than the one implied by location-

shift models? Consider adding asymmetric dependence such as

ri,t = βif1,t + f2,tεi,t + f3,tε
3
i,t, (9)

where εi,t is standard normal random variable with cumulative distribution function Φ(.).

The quantiles of the returns will then follow

Qri,t

[
τ |ft(τ)

]
= βif1,t + Φ−1(τ)

[
f2,t + f3,tΦ

−1(τ)2], (10)

for τ 6= 0.5 and we can clearly see that second factor in f(τ) = [f1,t, f2,t + f3,tΦ
−1(τ)2]> is
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quantile dependent.

The main benefit of the model proposed is that being agnostic about data generating

process and moment conditions, we use conditional quantiles of the observed returns to

capture nonlinearities in factor models. In case these factors are different from those obtained

on first and second moments, they will also be more informative for investors. In the next

section we estimate these quantities and compare them to volatility as well as other downside

risk factors to find support that data show such a rich structures.

2.3 Common Idiosyncratic Quantile Factor and the US firms

To estimate the common idiosyncratic quantile – CIQ(τ) – factors, we use returns on stocks

from the Center for Research in Securities Prices (CRSP) database sampled between January

1963 and December 2018. We include all stocks with codes 10 and 11 in estimating the

CIQ(τ) factors. We adjust the returns for delisting as described in Bali et al. (2016). We

follow the standard practice in the literature and exclude all “penny stocks” with prices less

than one dollar to avoid biases related to these stocks.8 We performed the analysis using all

the stocks, and the results did not qualitatively change. When not stated otherwise, we use

monthly data for both factor estimation and beta calculations.

In the process of the factor estimation, we proceed in a few steps. First, we use a moving

window of 60 months of monthly sampled observations. We select the stocks that have all the

observations in this window. For all these stocks, we run time-series regression to eliminate

the influence of the common (linear) factors

∀i : ri,t = αi + β>i ft + ei,t, t = 1, . . . , T (11)

and save the residuals ei,t. For the common factors ft, which we eliminate from the stock

returns, we resort to the three factors of Fama and French (1993).9 Second, we use the

residuals from the first step and, for every τ , estimate common idiosyncratic quantile factors,

ft(τ)

∀τ : ei,t = γi(τ)ft(τ) + ui,t(τ) (12)

where the quantile-dependent idiosyncratic error ui,t(τ) satisfies the quantile restriction fol-

lowing the methodology discussed in the previous subsection. We use only the first – the

8See, e.g., Amihud (2002).
9As discussed in Herskovic et al. (2016), there is a little difference between the results obtained us-

ing factors of Fama and French (1993) and purely statistically motivated ones estimated using the PCA
framework.
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most informative – estimated factor for our purposes. In the overwhelming majority of the

cases, the algorithms proposed in Chen et al. (2021) select exactly one factor to be the correct

number of factors that explain the panels of idiosyncratic returns.

Since we are interested to see how the quantile dependent factors relate to volatility,

we estimate an approximate factor model on squared residuals that captures the common

volatility factor. More specifically, we use residuals obtained from the Equation 11, square

them and estimate on them first principal component using PCA. Such factor denoted as

PCA-SQ will fail to capture the full factor structure if the distribution of the idiosyncratic

returns possess non-normal features (Chen et al., 2021).

While it is one of our main questions to study if quantile dependent risk is present in the

markets, and is not subsumed by volatility and downside risk, we first look at the correlations

between these risks. Consistent with common volatility factor literature, we also focus on

the changes in the CIQ(τ), and we work with ∆CIQ(τ) factors.10 Intuitively, we will look

at how investors price the innovations of these risks rather then levels.

Table 1: Correlations between CIQ(τ) and other factors. The table reports correlations between CIQ(τ)
factors and factors related to the asymmetric and variance risk. Data contain the period between January
1963 and December 2018.

variable / τ 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

Panel A: Levels of factors

PCA-SQ -0.76 -0.73 -0.69 -0.56 -0.24 0.15 0.23 0.53 0.70 0.75 0.78
CIV -0.45 -0.43 -0.39 -0.31 -0.06 -0.05 0.15 0.27 0.36 0.39 0.40
TR 0.13 0.12 0.12 0.07 0.01 -0.11 -0.11 -0.26 -0.27 -0.24 -0.23
VRP -0.05 -0.04 -0.05 -0.02 0.04 -0.09 -0.03 0.07 0.08 0.08 0.09
VIX -0.37 -0.34 -0.30 -0.20 0.12 0.11 0.20 0.36 0.40 0.39 0.39

Panel B: Differences of factors

PCA-SQ -0.53 -0.47 -0.43 -0.30 -0.09 0.21 0.22 0.37 0.53 0.59 0.65
CIV -0.21 -0.20 -0.18 -0.15 -0.09 0.04 0.07 0.09 0.10 0.11 0.08
TR 0.04 0.03 0.03 -0.01 -0.08 -0.10 -0.15 -0.26 -0.29 -0.27 -0.25
VRP 0.12 0.11 0.11 0.06 0.08 -0.02 -0.04 -0.06 -0.08 -0.09 -0.10
VIX 0.24 0.25 0.27 0.27 0.26 0.04 0.07 0.10 0.02 -0.04 -0.11

Table 1 reports correlations between CIQ(τ) factors and factors related to the variance

and asymmetric risk. In Panel A, we work with levels of CIQ(τ) factors and other factors,

in Panel B, we focus on differences of the factors. First, we look at the dependence between

CIQ(τ) factors and PCA-SQ factor. We can see that the correlation is the strongest if we

move to the tails with the correlation for CIQ(0.1) and PCA-SQ being equal to -0.76 for

the level of the factors but it decreases substantially if we look at the differences with the

correlation being equal to -0.53. Moreover, the correlation is stronger for the CIQ(τ) factors

with τ above the median.

10If not stated otherwise, in the rest of the paper, we perform all the analyses using ∆CIQ(τ) factors.
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Next, we look at the correlations with the common idiosyncratic variance factor of Her-

skovic et al. (2016). In this case, the correlations are slightly higher for τs below the median,

with peak correlation at τ = 0.1 being equal to -0.45 for the levels of the factors. On the

other hand, if we move to the differences, the correlation decreases to -0.21. Correlations

with the tail risk factor (TR) are relatively small with the peak at τ = 0.8 with a -0.29

correlation. Especially low are the correlations between TR factor and CIQ(τ) factors for

downside values of τ . Correlations with the variance risk premium (VRP) factor of Boller-

slev et al. (2009) are very low as well, with values no higher than 0.12 in absolute value

for both levels and differences of the factors. Finally, correlations with the VIX index are

symmetrical around the median τ with a peak of 0.39 at τ = 0.9 while there is a stronger

correlation between downside τs and the VIX with values around 0.26 in differences.

This preliminary analysis suggests that behavior of idiosyncratic quantiles shocks is in

non-negligible part distinct from shocks to volatility and downside risk measures.

In addition, Table 2 provides correlations between CIQ(τ) factors at different quantiles.

Correlation between CIQ(τ) in levels for the upper and lower part of the distribution are

far from perfect, e.g., the correlation between the lower tail factor CIQ(0.1) and upper tail

CIQ(0.9) is -0.69. This observation suggests that the factors do not simply duplicate infor-

mation and are hence not likely to be rescaled information contained in common volatility

factor (captured by e.g., PCA-SQ). Moreover, this dependence decreases substantially if we

look at the increments of the CIQ(τ) factors – dependence between lower and upper tail

factors reduces to -0.32. These results suggest that there is a potential for different pricing

information across quantiles and that this information does not simply mirror information

contained in the common volatility.

Table 2: Correlations between CIQ(τ) factors. The table presents unconditional correlations between
CIQ(τ) factors in levels (above diagonal) and differences (below diagonal). We estimate the factors using
FF3 residuals of the monthly CRSP stocks’ returns. Data contain the period between January 1963 and
December 2018.

τ 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

0.1 . 0.98 0.95 0.86 0.55 -0.03 -0.05 -0.32 -0.56 -0.63 -0.69
0.15 0.97 . 0.98 0.91 0.63 0.00 0.01 -0.24 -0.50 -0.58 -0.65
0.2 0.93 0.97 . 0.95 0.71 0.05 0.05 -0.16 -0.42 -0.52 -0.60
0.3 0.85 0.91 0.95 . 0.82 0.13 0.15 0.06 -0.22 -0.33 -0.43
0.4 0.68 0.77 0.83 0.93 . 0.23 0.28 0.36 0.12 0.02 -0.08
0.5 0.07 0.12 0.17 0.25 0.34 . 0.75 0.41 0.34 0.30 0.26
0.6 0.12 0.17 0.21 0.29 0.40 0.78 . 0.47 0.40 0.37 0.32
0.7 0.14 0.24 0.31 0.49 0.66 0.47 0.54 . 0.93 0.87 0.79
0.8 -0.10 -0.01 0.07 0.25 0.46 0.41 0.48 0.92 . 0.98 0.94
0.85 -0.21 -0.13 -0.05 0.13 0.35 0.39 0.46 0.85 0.96 . 0.97
0.9 -0.32 -0.25 -0.18 -0.01 0.22 0.33 0.39 0.75 0.90 0.95 .

Overall, we can see that the correlations between CIQ(τ) factors and other related factors

13



are far from perfect. The highest degree of comovement is, not surprisingly, seen for levels

of CIQ(τ) factors and PCA-SQ factor, which is substantially reduced if we look at the

differences of those factors. Moreover, a strong asymmetry in the correlations across τ

suggests that the information contained in the downside and upside CIQ factors differ.

3 Time-series Predictability of Market Return

We start examining the information content of the CIQ(τ) factors for subsequent short-term

market returns. Here we aim to predict the monthly excess return on the market that we

approximate by the value-weighted return of all CRSP firms. In the regressions, we also

control for popular predictive variables used in Welch and Goyal (2007) as well as three

closely related factors – TR factor of Kelly and Jiang (2014), the innovations of common

idiosyncratic volatility (∆CIV) factor of Herskovic et al. (2016), and the VRP factor of

Bollerslev et al. (2009).11 Moreover, we construct the PCA-SQ factor and use its increments

to control for the effect of the common volatility. Because the CIQ(τ) factors are estimated

using a rolling window, we use the last value of the factors estimated from each rolling

window to construct a single series of the CIQ(τ) factors.

First, we report the results from the univariate regressions of the market return on the

differences of the CIQ(τ) factors at various τ quantile levels of the form

rm,t+1 = γ0 + γ1 ×∆ft(τ) + εt+1 (13)

in Table 3. We report estimated scaled coefficients to capture the effect of one standard

deviation increase of the independent variable on the subsequent annualized market return.

The corresponding t-statistics are computed using Newey-West robust standard errors using

six lags.

The results in Table 3 document strong predictive power using the ∆CIQ(τ) factors for

the left part of the distribution, with the peak for τ = 0.3, where the increase (decrease) of

one standard deviation in the factor predicts subsequent decrease (increase) of 7.05 percents

in annualized market return.12 There is also some predictive power for the upper tail factor

when CIQ(0.9), but the effect is much smaller with only 3.50 percent increase in annualized

market return accompanied with only less than one-third of the R2 from the lower tail. From

11We replicated tail risk factor construction of Kelly and Jiang (2014) by ourself; we acquired data of
Herskovic et al. (2016) from Bernard Herskovic’s webpage and data of Bollerslev et al. (2009) from Hao
Zhou’s webpage.

12Note that the lower tail factors are on average negative. Increase (decrease) of these factors corresponds
to the decrease (increase) of risk, which leads to a decrease (increase) of the required risk premium.
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Table 3: Predictive power of the ∆CIQ(τ) factors. The table reports results from the univariate predictive
regressions of the value-weighted return of all CRSP firms on the ∆CIQ(τ) factors for various τ ∈ (0, 1).
Coefficients are scaled to capture the effect of one standard deviation increase in the factor on the annualized
market return in percent. The corresponding t-statistics are computed using the Newey-West robust standard
errors using six lags. We report both in-sample (IS) and out-of-sample (OOS) R2s. We also truncate the
predictions at zero following Campbell and Thompson (2007) (CT) and report corresponding IS and OOS
R2s. The time span covers the period between January 1960 and December 2018.

τ Coeff. t-stat R2 IS R2 OOS R2 IS CT R2 OOS CT
0.1 -6.31 -2.77 1.40 1.09 1.21 1.42
0.15 -6.49 -2.74 1.48 1.17 1.20 1.45
0.2 -6.38 -2.63 1.43 1.13 1.14 1.33
0.3 -7.05 -2.98 1.75 1.21 1.21 1.41
0.4 -6.59 -2.92 1.53 0.58 0.83 0.76
0.5 0.15 0.07 0.00 -0.37 0.00 -0.19
0.6 0.29 0.13 0.00 -0.30 0.00 -0.23
0.7 -0.88 -0.48 0.03 -0.67 0.03 -0.37
0.8 2.09 1.13 0.15 -0.26 0.10 -0.08
0.85 3.05 1.67 0.33 -0.03 0.21 0.31
0.9 3.50 1.88 0.43 0.06 0.29 0.31

a perspective of an investor, in times of high risk – captured by large negative increments

of the left-tail CIQ(τ) factor, she requires a premium for investing. And thus, these risky

periods correlate with the high marginal utility states of the investors.

Together with in-sample (IS) R2, we also report the out-of-sample (OOS) R2 from ex-

panding window scheme. We use data up to time t to estimate the prediction model and

then forecast the t + 1 return (the first window contains 120 monthly periods to obtain

sufficiently reasonable estimates). Then, the window is extended by one observation, the

prediction model is re-estimated and a new forecast is obtained. We repeat this procedure

until the whole sample is exhausted. The corresponding R2 is computed by comparing con-

ditional forecast and historical mean computed using the available data up to time t, i.e.,

1 −
∑

t(rm,t+1 − r̂m,t+1|t)
2/
∑

t(rm,t+1 − r̄m,t)2 where r̂m,t+1|t is out-of-sample forecast of the

t + 1 return using data up to time t, and r̄m,t is the historical mean of the market return

computed up to date t. Unlike the case of the IS R2, the OOS R2 can attain negative values

if the conditional forecasts perform worse than the historical mean forecast. The positive

values of the OOS R2 for τ between 0.1 and 0.4 provide strong evidence for the benefits of

the ∆CIQ(τ) factors for predicting the market return in the real-world setting. On the other

hand, the predictability vanishes for the higher values of τ .

To assess the economic usefulness for the investors, we further follow suggestions from

Campbell and Thompson (2007) (hence CT). They propose to truncate the predictions

from the estimated model at 0, as the investor would not have used a model to predict a

negative premium. This non-linear modification of the model should introduce caution into

the models. Based on this modification, we report both IS and OOS R2s. Naturally, using

this transformation, the IS R2 does not improve for any of the models, but the performance
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rises for the OOS analysis. Results suggest that the common fluctuations in the lower part

of the excess returns distributions robustly predict the subsequent market movement.

Next, we run bivariate regressions to assess whether the proposed quantile factors contain

additional information not included in the relevant previously proposed variables

rm,t+1 = γ0 + γ1 ×∆ft(τ) + γ2 × fControlt + εt+1 (14)

where we separately control for variables that may contain duplicate information. First,

in Table 4, we report coefficients and their t-statistics while controlling for differences of

the PCA-SQ factor, the ∆CIV of Herskovic et al. (2016), the TR factor of Kelly and Jiang

(2014), and the VRP factor of Bollerslev et al. (2009), respectively. For better comparability,

we also include results from the univariate predictions using the ∆CIQ(τ) factors only. In

the case of PCA-SQ factor, we can see that neither the significance nor the magnitude of

the predictive power of the downside CIQ factors is diminished. Moreover, the borderline

significance of the upside CIQ factors vanishes. This suggests that the common volatility

element is not the driving force of the predictive performance of the quantile factors. In

the second case, while controlling for the ∆CIV, the results regarding the ∆CIQ(τ) factors

remain the same, and ∆CIV proves not to predict future market returns. In the case of the

TR factor, the ∆CIQ(τ) factors mirror the results from the univariate regressions in terms

of coefficients and their significance. TR factor is significant across all the specifications,

although its effect is smaller and less significant than in the case of ∆CIQ(τ) for the lower

tail values of τ . In the third case, the VRP factor appears to be the most closely related in

terms of predictability to the ∆CIQ(τ) factors.13 The VRP is highly significant, and at the

same time, it diminishes the effect of the ∆CIQ(τ) factors – the scaled coefficients decreases

around 1.7 percentage points, and the corresponding t-statistics are now approximately 1.5.

This decrease in significance may be also caused by substantial decrease of the available time

period as the VRP starts in 1990.

As a next step, we control for variables discussed in Welch and Goyal (2007).14 Instead of

a large table of coefficients and t-statistics through all variables and quantiles, we summarize

the results in the Table 5, in which we include t-statistics of the ∆CIQ(τ) factors from the

bivariate regressions of the form 14 while controlling for said variables. We observe that none

13We acknowledge that there is no clear theoretical link between VRP and ∆CIQ(τ) factors. The VRP is
associated with the aggregate S&P 500 composite index (rather than the value-weighted return of all CRSP
stocks), which it only significantly predicts over a medium-term horizon. However, we have included it for
informational purposes and to potentially stimulate a discussion regarding the relationship between these
two phenomena in the future.

14For the information regarding the specification of the variables, see Welch and Goyal (2007). We
obtained the data from the Iwo Welch’s webpage.
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Table 4: Bivariate predictive regressions. The table reports results from the bivariate predictive regressions
of the value-weighted return of all CRSP firms on ∆CIQ(τ) factors for various τ ∈ (0, 1) and other control
variables. We employ the PCA-SQ factor, innovations of CIV factor of Herskovic et al. (2016), TR factor of
Kelly and Jiang (2014), and the VRP factor of Bollerslev et al. (2009), respectively. Coefficients are scaled
to capture the effect of one-standard-deviation increase in the factor on the annualized market return in
percent. The corresponding t-statistics are computed using the Newey-West robust standard errors using
six lags. The time span covers the period between January 1960 and December 2018 except the VRP that
starts in January 1990.

control / τ 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

CIQ -6.31 -6.49 -6.38 -7.05 -6.59 0.15 0.29 -0.88 2.09 3.05 3.50
(-2.77) (-2.74) (-2.63) (-2.98) (-2.92) (0.07) (0.13) (-0.48) (1.13) (1.67) (1.88)

R2 1.40 1.48 1.43 1.75 1.53 0.00 0.00 0.03 0.15 0.33 0.43

CIQ -6.05 -6.12 -5.89 -6.54 -6.33 -0.62 -0.52 -2.56 0.22 1.35 1.93
(-2.45) (-2.43) (-2.35) (-2.83) (-2.83) (-0.31) (-0.24) (-1.21) (0.10) (0.56) (0.78)

PCA-SQ 0.48 0.77 1.14 1.74 3.14 3.79 3.77 4.59 3.54 2.86 2.40
(0.22) (0.36) (0.56) (0.91) (1.59) (1.96) (1.90) (2.00) (1.40) (1.05) (0.86)

R2 1.40 1.50 1.47 1.85 1.87 0.48 0.48 0.67 0.47 0.51 0.55

CIQ -6.72 -6.89 -6.71 -7.29 -6.71 0.18 0.33 -0.84 2.17 3.15 3.56
(-2.82) (-2.77) (-2.66) (-2.98) (-2.87) (0.08) (0.15) (-0.47) (1.14) (1.68) (1.87)

∆CIV -1.96 -1.96 -1.78 -1.61 -1.19 -0.57 -0.58 -0.49 -0.77 -0.92 -0.84
(-0.59) (-0.59) (-0.54) (-0.49) (-0.36) (-0.16) (-0.17) (-0.14) (-0.22) (-0.26) (-0.24)

R2 1.53 1.61 1.54 1.84 1.58 0.01 0.01 0.04 0.17 0.36 0.45

CIQ -6.28 -6.44 -6.36 -6.99 -6.52 0.31 0.35 -0.76 2.27 3.12 3.58
(-2.76) (-2.72) (-2.63) (-2.96) (-2.88) (0.15) (0.16) (-0.41) (1.22) (1.72) (1.93)

TR 4.67 4.64 4.69 4.62 4.60 4.72 4.71 4.69 4.80 4.76 4.77
(2.33) (2.32) (2.35) (2.31) (2.31) (2.33) (2.33) (2.32) (2.35) (2.34) (2.34)

R2 2.17 2.24 2.20 2.50 2.27 0.78 0.78 0.80 0.96 1.12 1.23

CIQ -4.63 -4.80 -4.60 -4.67 -4.54 0.41 0.43 -0.92 0.85 2.31 1.67
(-1.39) (-1.38) (-1.38) (-1.46) (-1.47) (0.15) (0.14) (-0.35) (0.33) (0.87) (0.67)

VRP 11.83 11.79 11.62 11.55 11.44 11.58 11.56 11.52 11.64 11.73 11.67
(5.62) (5.60) (5.38) (5.31) (5.22) (5.35) (5.32) (5.33) (5.45) (5.54) (5.50)

R2 6.06 6.12 6.05 6.07 6.03 5.23 5.23 5.25 5.25 5.43 5.33

of the variables drives out the significance of the ∆CIQ(τ) factors. Moreover, the magnitude

of the significance remains very close to the ones from the univariate regressions.

3.1 Prediction using many CIQ(τ) Factors

Because it is ex-ante not clear on which quantile the investor should base her investment

strategy on, we perform an out-of-sample prediction exercise which utilizes information from

more than one ∆CIQ(τ) factor when constructing a forecast. The results are summarized

in Table 6. We use either all of the factors when predicting the market return or we use

two disjunct subsets of them. Using the first subset, we employ a prior assumption that

only the downside factors (τ < 0.5) are significant predictors of the market return. Second

subset imposes the premise that the upside factors (τ > 0.5) possess the forecasting power

for the aggregate return. To do that, we use various models to exploit the information from

the ∆CIQ(τ) factors. We train the models on the first 120 monthly observations and then
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Table 5: Controlled predictive significance of the ∆CIQ(τ) factors using Welch and Goyal (2007) variables.
The table summarizes t-statistics associated with the ∆CIQ(τ) factors from bivariate regressions when
controlling for macroeconomic variables discussed in Welch and Goyal (2007). The dependent variable is
the value-weighted return of all CRSP firms. The t-statistics are computed using the Newey-West robust
standard errors using six lags. The time span covers the period between January 1960 and December 2018.

control/ τ 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

dp -2.78 -2.75 -2.65 -3.01 -2.94 0.04 0.11 -0.51 1.11 1.65 1.88
dy -2.75 -2.72 -2.63 -2.98 -2.92 0.04 0.11 -0.52 1.09 1.61 1.84
ep -2.77 -2.74 -2.64 -2.99 -2.93 0.06 0.13 -0.52 1.11 1.66 1.87
de -2.77 -2.74 -2.63 -2.98 -2.91 0.07 0.12 -0.46 1.16 1.71 1.90
svar -2.81 -2.75 -2.64 -2.96 -2.87 0.10 0.21 -0.23 1.39 1.87 2.06
bm -2.77 -2.74 -2.63 -2.98 -2.92 0.07 0.13 -0.49 1.12 1.67 1.88
ntis -2.72 -2.69 -2.59 -2.93 -2.89 0.07 0.13 -0.47 1.12 1.67 1.87
tbl -2.75 -2.74 -2.62 -2.95 -2.89 0.08 0.16 -0.44 1.15 1.71 1.88
lty -2.75 -2.73 -2.61 -2.96 -2.89 0.07 0.15 -0.46 1.13 1.68 1.88
ltr -2.52 -2.52 -2.44 -2.82 -2.79 -0.03 0.08 -0.50 0.94 1.47 1.63
tms -2.82 -2.79 -2.68 -3.03 -2.97 0.09 0.14 -0.46 1.19 1.71 1.91
dfy -2.72 -2.69 -2.59 -2.95 -2.92 0.09 0.13 -0.47 1.11 1.62 1.82
infl -2.63 -2.61 -2.50 -2.85 -2.84 0.14 0.17 -0.45 1.08 1.62 1.79

expand the estimation window as discussed before. We report both simple OOS R2 and OOS

R2 CT to asses the fit. When performing regularization in the coefficient estimation, one

has to choose so called tuning parameters. We choose the tuning parameters based on the

in-sample leave-one-out full cross-validation procedure. We chose the forecast construction

methods following Dong et al. (2022).

The first models that we employ is an OLS model which uses a OLS fitted multivariate

regression model (estimated in-sample) to predict one-month-ahead return of the market.

We can see that using all the ∆CIQ(τ) factors to predict OOS return yields a negative R2.

This is caused by the overfitting problem when we use many correlated variables and do

not impose any parameter regularization. Using only either downside or upside factors and

truncating the prediction at zero, yield some marginal gains for the investor.

The LASSO (least absolute shrinkage and selection operator, Tibshirani (1996)) model

(estimator) introduces a regularization in the estimation procedure of the predictive coef-

ficients. In the case of LASSO, only a subset of the predictors is chosen to have non-zero

coefficients. As we can see, the performances for all τ and downside τ models substantially

improve. On the other hand, prediction based on the upside τs do not yield a good fit even

after the introduction of a regularization.

Next, we generalize the previous LASSO model and report results based on the elastic

net (ENET) estimator (Zou and Hastie, 2005). The estimator employs `1 (LASSO) and `2

(ridge regression, Hoerl and Kennard (1970)) penalty terms. For simplicity reasons, we chose

the penalty weights to be both equal to 0.5 without any tuning procedure. As we can see,

the results closely mirror the results from the LASSO estimation.

As a next model, we perform a simple combination forecast. We first obtain univariate
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Table 6: Out-of-sample performance of the forecast combinations. The table reports performance of various
specifications of multivariate predictive models using all ∆CIQ(τ) factors, τ below median ∆CIQ factors
(downside), or above median ∆CIQ factors (upside). The time span covers the period between January 1960
and December 2018.

All τ Downside τ Upside τ

model R2 R2 CT R2 R2 CT R2 R2 CT

OLS -1.53 -0.40 -0.44 0.53 -0.31 0.39
LASSO 0.94 0.95 0.21 0.80 -0.25 0.14
ENET 0.92 1.03 0.07 0.71 -0.11 0.27
Combination 1.10 1.06 1.26 1.39 -0.07 0.07
C-LASSO 0.79 0.92 0.93 1.29 -0.61 -0.23
C-NET 0.86 0.78 0.85 1.22 -0.65 -0.19
PCA 1.17 1.22 1.21 1.46 -0.31 -0.10
OLS selection 0.87 1.28 0.87 1.28 -0.73 -0.10

forecasts for each ∆CIQ(τ) factor separately and then the final forecast is obtained as a

simple average of the univariate forecasts. We can see that the model performs very well for

selection of all τs and downside τs, with R2 being up to 1.26% for downside τs and R2 CT

of 1.39%. On the other hand, upside τs do not lead to any valuable forecasts.

C-LASSO and C-NET follow the same idea as the Combination model but instead of

averaging all the univariate forecasts, they run multivariate penalized regression (LASSO

and ENET, respectively) of the future market return on the univariate forecasts to select the

best combination of them. The resulting forecast is then obtained by plugging the last value

of ∆CIQ(τ) from a window into the fitted models. Once again, all τ and downside τ subsets

perform both very well, with R2 of 0.93% and R2 CT of 1.29% for downside τ C-LASSO.

But the models using upside τ yield even negative R2. This is the case for all the remaining

models which use upside τ factors.

PCA model aggregates information and creates the first principal component from all the

∆CIQ(τ) factors and uses it as the prediction variable in the univariate prediction regression.

We observe that the downside τ PCA model performs the best across all the specifications.

Finally, the OLS selection model fits univariate prediction models for each ∆CIQ(τ)

factor and uses the univariate model 13 with the best in-sample fit to predict the future

market return. This simple approach yields very solid performance of 0.87% for R2 and

1.28% for R2 CT.

To summarize this section, we observed that using the downside ∆CIQ(τ) factors in

various multivariate models, we obtain significant positive performance. On the contrary,

the upside ∆CIQ(τ) factors do not result into economic gains because they do not outperform

the forecasts based on the historical mean. All the results thus suggest that the driving force

behind the downside quantile factors’ performance is not the common volatility component

but the information contained in the left part of the common factor structure.
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4 Pricing the CIQ(τ) Risks in the Cross-Section

In this section, we investigate the pricing implications of the presented common idiosyncratic

quantile factors for the cross-section of stock returns. We hypothesize that the stochastic

discount factor increases in the CIQ(τ) risk, as the risk-averse investor’s marginal utility is

high in the states of high CIQ(τ) risk. Based on that hypothesis, we assume that the assets

that perform poorly in the states of high CIQ(τ) risk will require a higher risk premium for

holding by the investors. On the other hand, assets that perform well during these states

serve as a hedging tool and will be traded with higher prices and thus lower expected returns.

The stock’s sensitivities to the factors capture betas estimated by the linear regression of

stocks’ returns on the factors. If not explicitly stated otherwise, we use as our predicted

variable monthly out-of-sample returns following the estimation window. We also try to

predict one-year returns using portfolios to assess the persistence of the CIQ(τ) betas and

thus indirectly investigate the transaction costs related to the trading of these factors. Data

that we employ cover the usual asset pricing period between January 1963 and December

2018. We exclude “penny stocks” with prices less than one dollar to avoid related biases.

To alleviate the concerns that the quantile factors simply mirror the dynamics of the

idiosyncratic volatilities of the single-stock returns, in the case of pricing the cross-section, we

perform the estimation of the factors using standardized idiosyncratic returns.15 Specifically,

we estimate time-varying volatility using exponentially weighted moving average model.

Then, we use the ∆ft(τ) estimates as our risk factors. For all available stocks and and for

all τ , we estimate quantile-specific betas

ri,t = αi + βi(τ)∆ft(τ) + vi,t(τ),

using the least-square estimator. These betas will be used in the following asset pricing tests

as a measure of the exposure to the CIQ(τ) factors. Same as the factors, betas are also

estimated using the 60-month rolling window. We include the stocks that possess at least 48

monthly observations. Betas computed up to time t are used to predict returns at time t+ 1

or further – no overlap between estimation and prediction periods. The control variables are

estimated using the same procedure as originally proposed.

Later in the analysis, we also control for the effect of the increments of the PCA-SQ

factor, ∆CIV factor and many other related variables to show that the effect of the newly

proposed quantile factors is not subsumed by the effect of any related factor or stock-specific

variable.

15In Appendix in Table 16, we report correlations between the CIQ(τ) factors estimated using standardized
data. The correlations are generally smaller.
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4.1 Cross-sectional Regressions

As a first step in the investigation of the cross-sectional implications of exposures to the

common idiosyncratic quantile risks, we perform two-stage Fama and MacBeth (1973) pre-

dictive regressions. We explore the hypothesis that the exposures to the ∆CIQ(τ) factors

align with the future excess returns of the stocks. This type of asset pricing test moreover

conveniently allows for simultaneous estimation of many risk premiums associated with var-

ious risk measures. That means that we can estimate the risk premium associated with the

CIQ(τ) risks while controlling for other risk measures previously proposed in the literature.

More specifically, for each time t = 1, . . . , T − 1 using all of the stocks i = 1, . . . , N available

at time t and t + 1,16 we cross-sectionally regress all the returns at time t + 1 on the betas

estimated using only the information available up to time t. This procedure yields estimates

of prices of risk λt+1(τ) while controlling for the most widely used competing measure of risk

ri,t+1 = α+β
CIQ(τ)
i,t (τ)λ

CIQ(τ)
t+1 (τ) + β>Controli,t λControlt+1 + ei,t+1 (15)

where βControli,t is vector of control betas or other stock characteristics and λControlt+1 is vector

of corresponding prices of risk. Using T − 1 cross-sectional estimates of the prices of risk,

we compute the average price of risk associated with each λCIQ(τ) as

λ̂CIQ(τ)(τ) =
1

T − 1

T∑
t=2

λ̂
CIQ(τ)
t (τ) (16)

and report them along with their t-statistics based on the Newey-West robust standard

errors.

We summarize the first set of results in Table 7 where we report estimation outcomes

of controlling the effect of ∆CIQ(τ) factors by general risk measures. But first, we report

results from the univariate regressions on CIQ(τ) betas. We observe similar results to those

obtained from the market predictions – the exposure to the common idiosyncratic downside

events is significantly compensated in the cross-section of stock returns. For example, CIQ(τ)

for τ = 0.2 possess a coefficient of 1.11 (t-stat = 2.57), on the other hand, for τ = 0.8, the

estimated coefficient is equal to -0.14 (t-stat = -0.30). This suggests that the exposure to

the common idiosyncratic downside events is significantly compensated in the cross-section.

On the contrary, to hold assets with high exposure to the upside common movements the

investors have to pay a small discount for those stock, although not statistically significant

one.

16A stock is identified as available, if it possess at least 48 monthly return observations during the last
60-month window up to time t and also an observation at time t+ 1.
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Table 7: Fama-MacBeth regressions using ∆CIQ(τ) factors and general risk measures. The table contains
estimated prices of risk and t-statistics from the Fama-MacBeth predictive regressions. Each segment con-
tains prices of risk of CIQ(τ) betas while controlling for various risk measures. Data contain period between
January 1963 and December 2018. In each window, we use all the CRSP stocks that have at least 48 monthly
observations, and we exclude penny stocks with prices less than 1$. Note the coefficients are multiplied by
100 for clarity of presentation.

0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

CIQ(τ) 0.90 0.94 1.11 1.52 2.50 0.55 1.01 0.71 -0.14 -0.22 -0.27
(2.52) (2.42) (2.57) (2.88) (2.80) (0.20) (0.41) (1.13) (-0.30) (-0.49) (-0.60)

CIQ(τ) 0.41 0.46 0.59 0.95 1.78 0.55 0.91 1.02 0.39 0.30 0.22
(1.43) (1.53) (1.76) (2.18) (2.25) (0.21) (0.39) (1.74) (0.97) (0.80) (0.59)

Mkt -0.23 -0.23 -0.23 -0.22 -0.23 -0.25 -0.25 -0.24 -0.25 -0.25 -0.24
(-1.70) (-1.72) (-1.71) (-1.68) (-1.69) (-1.88) (-1.87) (-1.77) (-1.83) (-1.85) (-1.84)

CIQ(τ) 0.72 0.75 0.87 1.19 2.03 -0.37 -1.11 0.41 -0.08 -0.11 -0.14
(2.56) (2.47) (2.54) (2.64) (2.65) (-0.17) (-0.52) (0.80) (-0.22) (-0.34) (-0.42)

Idiosyncratic volatility -14.12 -14.14 -14.15 -14.17 -14.40 -14.57 -14.61 -14.64 -14.58 -14.24 -13.86
(-2.18) (-2.18) (-2.17) (-2.20) (-2.17) (-2.20) (-2.20) (-2.19) (-2.21) (-2.18) (-2.12)

CIQ(τ) 0.87 0.91 1.08 1.47 2.43 0.42 0.91 0.72 -0.13 -0.22 -0.28
(2.47) (2.38) (2.53) (2.76) (2.74) (0.15) (0.38) (1.17) (-0.29) (-0.50) (-0.63)

Idiosyncratic skewness 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02
(0.26) (0.29) (0.28) (0.31) (0.33) (0.37) (0.41) (0.47) (0.47) (0.53) (0.57)

CIQ(τ) 0.86 0.90 1.07 1.47 2.43 0.43 0.91 0.73 -0.12 -0.21 -0.27
(2.46) (2.37) (2.52) (2.76) (2.75) (0.16) (0.38) (1.18) (-0.27) (-0.48) (-0.61)

Skewness -0.38 -0.30 -0.34 -0.25 -0.17 -0.13 -0.03 0.17 0.15 0.32 0.46
(-0.13) (-0.10) (-0.12) (-0.09) (-0.06) (-0.04) (-0.01) (0.06) (0.05) (0.11) (0.17)

As those results suggest, there is a strong asymmetry in the pricing implications of the

∆CIQ(τ) factors. To further assess it, we perform the following set of bivariate regressions

ri,t+1 = αt+1 + βCIQi,t (τdown)λt+1(τdown)CIQ + βCIQi,t (τup)λt+1(τup)
CIQ + ei,t+1,

τdown = {0.1, 0.15, 0.2, 0.3, 0.4}, τup = {0.6, 0.7, 0.8, 0.85, 0.9}
(17)

where we assess the joint effect of downside and upside CIQ(τ) factors. We report t-statistics

for each pair of λ(τdown)CIQ and λ(τup)
CIQ in the Figure 1. We observe that the prices of

risk associated with downside risk remain statistically significant using every combination of

downside and upside CIQ factors. On the other hand, the risk prices for the upside potential

are in agreement with the previous results – insignificant but negative when controlling for

higher values of τdown.

Next, in the rest of the Table 7, we present results from bivariate regressions when

controlling for the effect of general risk measures. We report the results of including CAPM

betas by regressing the returns on the market return (Mkt). Interestingly, the effect of the

CAPM beta diminishes the pricing relationship for the extreme left τ CIQ factors but the

price of risk related to the linear exposure to the market factor possess counterintuitive

negative sign – consistent with previous empirical evidence. Next, we control for the effect

of the idiosyncratic volatility computed from the residuals of the 3-factor model of Fama
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Figure 1: ∆CIQ(τ) betas – bivariate cross-sectional regressions. The figure reports t-statistics of prices of
risks from bivariate regressions from the Equation 17 of CIQ(τ) betas for downside and upside τs. Data
contain period between January 1963 and December 2018. In each window, we use all the CRSP stocks that
have at least 48 monthly observations, and we exclude penny stocks with prices less than 1$.
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and French (1993). The effect of the CIQ exposures remain very close to the one from the

univariate regressions. Besides that, we confirm the presence of the idiosyncratic volatility

puzzle. Next, we present results when controlling for idiosyncratic and total skewness. Those

variables do not possess a significant pricing information for the cross-section, on the other

hand, the effect of the CIQ factors remain consistent with the previous results.

Second, we report results from the bivariate17 regressions in which we include as a con-

trol various risk measures based on common volatility or asymmetric dependence. Those

measures were previously in the literature proven to be significant predictors of expected

returns. We summarize the estimation outcomes in Table 8.

To investigate whether the quantile factors provide different priced information beyond

conventional approximate factor models, we construct and control for the following factor

related to the common volatility. To do that, we proceed similarly as in the case of mar-

ket prediction and construct a factor based on principal component analysis that captures

dynamics in the common volatility. More specifically, as in the construction of the quantile

factors – using the 60-month moving window, we extract the standardized idiosyncratic re-

turns and square them. Then, we perform principal component analysis on those squared

residuals and take the first principal component that explains the most common time vari-

ation across the squared residuals, and we denote it as PCA-SQ. We then difference the

17Except for the coskewness and cokurtosis, which we include both at the same time in the regression.

23



factor and use its increments as a control factor. From the results, we can conclude that

the quantile factors extract very different information regarding the expected returns, as

the specification based on the factor extracted from the squared residuals turn out not to

be a significant predictor in the cross-section of stock returns. One has to look deeper into

the common distribution if he wants to identify priced information regarding the common

distributional movements.

Next, we employ volatility betas computed on differences of the CIV factor of Herskovic

et al. (2016). We see that the results regarding CIQ(τ) betas still hold both qualitatively

and quantitatively similar to the case of univariate regressions. Moreover, CIV risk is priced

as well; especially strong is the relationship when we control for CIQ(τ) betas with τ from

the right part of the distribution. These results suggest that both common idiosyncratic

volatility and quantile risk are priced and do not convey the same pricing information.

As another related control, we use the tail risk (TR) factor of Kelly and Jiang (2014). As

we can see, TR betas do not drive out the CIQ(τ) betas’ effect, which remains significant,

similarly to the univariate specification. Next, we control for related group of risk measures

which consider the non-linear relationship between asset and market returns. By following

the specifications of Harvey and Siddique (2000) and Ang et al. (2006), respectively, we

control simultaneously for coskewness and cokurtosis. Once again, those measures do not

drive out the significance of the CIQ(τ) betas. Coskewness possess the expected sign but

it is not statistically significant. On the other hand, cokurtosis is borderline significant for

τ ≥ 0.5 but with opposite sign than expected.

Another approach to capture non-linear dependence is via downside risk (DR) beta, which

describes conditional covariance below some threshold level. We entertain the specification

of Ang et al. (2006), which sets the threshold value equal to the average market return. As

we can see, downside beta do not subsume the effect of the ∆CIQ(τ) factors, neither it is a

significant predictor of future returns.

Another related left-tail risk measure is hybrid tail covariance risk (HTCR) measure

proposed by Bali et al. (2014). Although, it is highly significant predictor of expected

returns, it does not drive the effect of the CIQ(τ) risks out. Next, we include negative

semibeta (β−) of Bollerslev et al. (2021) in our bivariate regression. Similarly as in the

previous cases, the exposure to the quantile factors yields a significant risk premium.

Then, to control for the effect of comovement asymmetry between left and right parts

of the joint distribution of stock and market return, we include downside asymmetric co-

movement (DOWN ASY) measure of Jiang et al. (2018). This measure does not affect the

relationship between expected returns and CIQ(τ) betas either.

To control for the effect of crashes in many risk factors, we control for multivariate crash
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Table 8: Fama-MacBeth regressions using CIQ(τ) factors and asymmetric risk measures. The table con-
tains estimated prices of risk and t-statistics from the Fama-MacBeth predictive regressions. Each segment
contains prices of risk of ∆CIQ(τ) betas while controlling for various asymmetric risk measures. Data contain
period between January 1963 and December 2018. In each window, we use all the CRSP stocks that have at
least 48 monthly observations, and we exclude penny stocks with prices less than 1$. Note the coefficients
are multiplied by 100 for clarity of presentation.

0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

CIQ(τ) 0.87 0.93 1.01 1.31 2.21 0.40 0.79 1.09 0.20 0.20 -0.12
(2.45) (2.52) (2.53) (2.69) (2.42) (0.14) (0.30) (1.55) (0.43) (0.43) (-0.26)

PCA-SQ 8.56 8.97 2.57 -9.04 -22.35 -23.82 -26.22 -39.26 -29.58 -30.30 -14.48
(0.35) (0.37) (0.11) (-0.38) (-0.92) (-0.93) (-1.01) (-1.38) (-1.04) (-1.07) (-0.54)

CIQ(τ) 0.77 0.81 0.99 1.38 2.34 1.26 2.14 0.89 -0.04 -0.13 -0.18
(2.09) (2.10) (2.38) (2.66) (2.68) (0.49) (0.91) (1.61) (-0.10) (-0.30) (-0.41)

CIV -0.39 -0.40 -0.43 -0.46 -0.50 -0.57 -0.55 -0.55 -0.53 -0.53 -0.51
(-1.58) (-1.64) (-1.75) (-1.91) (-2.08) (-2.46) (-2.35) (-2.34) (-2.21) (-2.23) (-2.16)

CIQ(τ) 0.86 0.88 1.03 1.37 2.16 -0.77 -0.24 0.24 -0.43 -0.44 -0.44
(2.45) (2.28) (2.42) (2.64) (2.53) (-0.29) (-0.10) (0.41) (-0.91) (-1.00) (-1.00)

TR 0.11 0.11 0.11 0.12 0.12 0.12 0.11 0.12 0.12 0.12 0.12
(1.33) (1.30) (1.32) (1.40) (1.41) (1.47) (1.42) (1.38) (1.43) (1.42) (1.36)

CIQ(τ) 0.82 0.87 1.03 1.41 2.25 0.28 0.89 0.82 -0.03 -0.12 -0.18
(2.40) (2.39) (2.47) (2.83) (2.76) (0.11) (0.39) (1.38) (-0.07) (-0.27) (-0.41)

Coskew -0.12 -0.13 -0.14 -0.16 -0.16 -0.16 -0.15 -0.17 -0.17 -0.17 -0.17
(-0.44) (-0.46) (-0.51) (-0.57) (-0.57) (-0.58) (-0.57) (-0.61) (-0.61) (-0.62) (-0.60)

Cokurt -0.11 -0.11 -0.11 -0.11 -0.13 -0.16 -0.16 -0.15 -0.14 -0.14 -0.14
(-1.50) (-1.48) (-1.45) (-1.51) (-1.72) (-2.06) (-2.07) (-2.01) (-1.90) (-1.88) (-1.78)

CIQ(τ) 0.68 0.73 0.89 1.30 2.26 0.55 0.88 0.87 0.13 0.03 -0.05
(2.19) (2.20) (2.39) (2.72) (2.74) (0.21) (0.39) (1.51) (0.33) (0.07) (-0.13)

βDR -0.12 -0.12 -0.12 -0.11 -0.12 -0.14 -0.14 -0.13 -0.13 -0.13 -0.12
(-1.17) (-1.17) (-1.15) (-1.11) (-1.18) (-1.40) (-1.41) (-1.27) (-1.29) (-1.28) (-1.25)

CIQ(τ) 0.96 1.01 1.18 1.63 2.69 0.51 0.69 0.68 -0.15 -0.24 -0.28
(2.76) (2.60) (2.88) (3.19) (3.15) (0.20) (0.29) (1.10) (-0.34) (-0.56) (-0.64)

HTCR 119.53 118.76 118.64 119.47 118.91 111.84 113.06 118.60 118.29 116.58 114.63
(3.00) (2.98) (2.97) (2.97) (2.91) (2.75) (2.77) (2.88) (2.92) (2.96) (2.94)

CIQ(τ) 0.80 0.80 0.84 1.06 1.68 -0.75 -0.73 0.15 -0.27 -0.32 -0.38
(2.41) (2.43) (2.32) (2.22) (2.00) (-0.28) (-0.28) (0.21) (-0.55) (-0.70) (-0.80)

β− 0.15 0.14 0.13 0.12 0.12 0.11 0.12 0.10 0.11 0.12 0.14
(0.69) (0.64) (0.62) (0.60) (0.55) (0.51) (0.55) (0.47) (0.49) (0.54) (0.63)

CIQ(τ) 0.86 0.89 1.05 1.44 2.34 0.33 0.78 0.66 -0.15 -0.22 -0.27
(2.45) (2.26) (2.46) (2.73) (2.61) (0.12) (0.32) (1.09) (-0.33) (-0.51) (-0.63)

DOWN ASY -0.46 -0.46 -0.55 -0.56 -0.54 -0.58 -0.50 -0.43 -0.40 -0.27 -0.20
(-0.23) (-0.23) (-0.26) (-0.27) (-0.26) (-0.27) (-0.24) (-0.21) (-0.19) (-0.13) (-0.10)

CIQ(τ) 1.07 1.10 1.26 1.58 2.65 1.26 1.03 1.13 0.13 -0.01 -0.15
(2.70) (2.56) (2.68) (2.61) (2.54) (0.40) (0.37) (1.55) (0.25) (-0.03) (-0.32)

MCRASH 2.31 2.27 2.26 2.19 2.17 2.20 2.22 2.12 2.00 1.99 2.01
(2.59) (2.57) (2.55) (2.48) (2.43) (2.41) (2.46) (2.25) (2.07) (2.05) (2.08)

CIQ(τ) 0.92 0.96 1.09 1.45 2.19 1.01 1.58 0.83 -0.12 -0.24 -0.33
(2.70) (2.62) (2.66) (2.72) (2.40) (0.39) (0.66) (1.40) (-0.31) (-0.64) (-0.89)

COS PRED -2.19 -2.26 -2.29 -2.40 -2.51 -2.53 -2.57 -2.50 -2.37 -2.40 -2.42
(-1.30) (-1.34) (-1.34) (-1.40) (-1.47) (-1.49) (-1.52) (-1.46) (-1.39) (-1.43) (-1.44)

risk (MCRASH) of Chabi-Yo et al. (2022).18 MCRASH possess significant predictive power

for the cross-section, which does not erase the effect of common idiosyncratic risk on the

18We employ the baseline seven-factor version of their measure.
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expected returns. Especially strong is the relationship between MCRASH and expected

returns when controlling for CIQ(τ) risk in the left part of the joint distribution.

To control for the expectations of the coskewness, we also include stock-level predicted

systematic skewness (COS PRED) of Langlois (2020) in the regressions. We can see that

neither this variable drive out the effect of CIQ(τ) factors.

We also investigate whether the pricing information of the ∆CIQ(τ) factors is not sub-

sumed by stock characteristics based on accounting and trading information.19 To that end,

we provide the results of the multivariate cross-sectional regressions, in which we simul-

taneously control stock-level characteristics such as size, book-to-price, net payout yield,

turnover, illiquidity, profit, and investment. We report the results in Table 9. We can see

that the additional variables do not erase the pricing effect of the CIQ(τ) risks. The downside

factors are significant determinants of the risk premium peaking at τ = 0.3 with t-statistics

of 2.47. On the other hand, exposure to the upside factors do not carry any significant

pricing information.

Table 10 summarizes the results of controlling for the effect of past returns on the cross-

section. Same as in the case of previous set of variables, we report estimation results from

multivariate regression including variables maximum return, momentum, intermediate re-

turn, and lagged return. We observe that the additional variables slightly diminish the

effect of the ∆CIQ(τ) factors for extreme left tail (τ between 0.1 and 0.2) but the effect

for non-extreme downside risk remain strong. The effect of upside quantile factors remain

insignificant even in this setting.

To summarize this subsection, we have shown that the CIQ(τ) results from the Fama-

MacBeth regressions suggest that the exposure to the idiosyncratic downside common events

is significantly priced in the cross-section of stock returns, and that none of the discussed

risks drives out the significance of these results. On the other hand, the exposure to the

idiosyncratic upside potential captured by the quantile factors for τ ≥ 0.5 do not possess

significant pricing implications for the cross-section of stock returns. This asymmetry further

favors the hypothesis that the common volatility is not the reason behind the significant

pricing consequences of the downside quantile factors.

4.2 Portfolio Sorts

Next, we asses performance of the ∆CIQ(τ) factors in terms of investment opportunities.

To this end, we look at the returns of the portfolios sorted on the CIQ(τ) betas. Every

month, we estimate CIQ(τ) betas for all stocks that possess 48 return observations during

19We construct the variables in the same vein as in Langlois (2020).
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Table 9: Fama-MacBeth regressions using CIQ(τ) factors and stock characteristics. The table contains
estimated prices of risk and t-statistics from the Fama-MacBeth predictive regressions. Each segment con-
tains prices of risk of ∆CIQ(τ) betas while controlling for various stock characteristics. Data contain period
between January 1963 and December 2018. In each window, we use all the CRSP stocks that have at least
48 monthly observations, and we exclude penny stocks with prices less than 1$. Note the coefficients are
multiplied by 100 for clarity of presentation.

0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

CIQ(τ) 0.68 0.72 0.83 1.14 1.91 0.63 0.11 0.67 0.03 -0.04 -0.08
(2.20) (2.13) (2.28) (2.47) (2.42) (0.25) (0.05) (1.19) (0.07) (-0.11) (-0.20)

Size -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
(-1.74) (-1.75) (-1.74) (-1.76) (-1.79) (-1.89) (-1.89) (-1.73) (-1.73) (-1.76) (-1.84)

Book-to-price 0.11 0.11 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12
(1.76) (1.75) (1.71) (1.71) (1.79) (1.90) (1.92) (1.94) (1.94) (1.93) (1.90)

Net payout yield 0.95 0.88 0.91 0.93 1.05 1.23 1.26 1.27 1.26 1.17 1.03
(1.19) (1.12) (1.13) (1.07) (1.11) (1.21) (1.24) (1.26) (1.35) (1.33) (1.33)

Turnover -0.10 -0.10 -0.10 -0.10 -0.11 -0.11 -0.11 -0.11 -0.10 -0.10 -0.10
(-2.05) (-2.13) (-2.16) (-2.21) (-2.23) (-2.07) (-2.08) (-2.13) (-2.09) (-2.13) (-2.10)

Illiquidity 1.86 1.86 1.86 1.85 1.85 1.95 1.95 1.97 1.97 1.96 2.00
(1.08) (1.09) (1.09) (1.08) (1.10) (1.18) (1.17) (1.14) (1.13) (1.13) (1.13)

Profit 0.47 0.46 0.47 0.47 0.47 0.47 0.47 0.48 0.48 0.48 0.48
(3.60) (3.59) (3.61) (3.61) (3.56) (3.56) (3.57) (3.68) (3.71) (3.71) (3.68)

Investment -0.39 -0.39 -0.38 -0.38 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39
(-7.13) (-7.09) (-7.07) (-7.16) (-7.08) (-7.20) (-7.18) (-7.22) (-7.24) (-7.26) (-7.28)

Table 10: Fama-MacBeth regressions using ∆CIQ(τ) factors and momentum-type characteristics. The
table contains estimated prices of risk and t-statistics from the Fama-MacBeth predictive regressions. Each
segment contains prices of risk of CIQ(τ) betas while controlling for various momentum-type characteristics.
Data contain period between January 1963 and December 2018. In each window, we use all the CRSP stocks
that have at least 48 monthly observations, and we exclude penny stocks with prices less than 1$. Note the
coefficients are multiplied by 100 for clarity of presentation.

0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

CIQ(τ) 0.49 0.52 0.63 0.88 1.79 0.83 0.13 0.72 0.13 0.10 0.08
(1.66) (1.69) (1.90) (2.11) (2.49) (0.37) (0.06) (1.31) (0.34) (0.29) (0.25)

Maximum return -11.17 -11.13 -11.12 -11.12 -11.12 -11.17 -11.22 -11.40 -11.49 -11.41 -11.24
(-3.16) (-3.15) (-3.14) (-3.05) (-3.00) (-2.99) (-2.99) (-3.09) (-3.17) (-3.21) (-3.22)

Momentum 0.59 0.59 0.59 0.60 0.58 0.57 0.57 0.58 0.58 0.58 0.58
(3.68) (3.65) (3.68) (3.69) (3.63) (3.61) (3.61) (3.59) (3.63) (3.58) (3.57)

Intermediate return 0.06 0.05 0.04 0.04 0.06 0.08 0.08 0.07 0.07 0.07 0.07
(0.32) (0.31) (0.26) (0.26) (0.35) (0.46) (0.45) (0.40) (0.38) (0.41) (0.42)

Lagged return -3.72 -3.73 -3.76 -3.75 -3.69 -3.64 -3.62 -3.60 -3.63 -3.65 -3.70
(-7.05) (-7.09) (-7.12) (-7.06) (-6.89) (-6.79) (-6.73) (-6.73) (-6.84) (-6.91) (-7.07)

the last 60 months using data up to time t. We sort the stocks into ten portfolios based on

their betas for every τ separately. We then record the portfolios’ performances at time t+ 1

using either an equal-weighted or value-weighted scheme. Then we move one month ahead,

re-estimate all the betas, and create new portfolios. We expect that, for τ < 0.5, there will

be an increasing pattern of returns from the low exposure to the high exposure portfolios,

and vice versa for τ > 0.5. The results for sorts based on ten portfolios summarizes Table

11. We observe an increasing return pattern for the portfolios with τ up to 0.4 for both

equal-weighted and value-weighted schemes. This pattern practically disappears when we

look at the portfolios formed on higher τ CIQ(τ) betas. This observation is in agreement
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Table 11: Portfolios sorted on the exposure to the ∆CIQ(τ) factors. The table contains annualized out-of-
sample excess returns of ten portfolios sorted on the exposure to the ∆CIQ(τ) factors. We use all the CRSP
stocks that have at least 48 monthly observations in each 60-month window. We report returns of the high
minus low (H - L) portfolios, their t-statistics, and annualized 6-factor alphas with respect to the four factors
of Carhart (1997), CIV shocks of Herskovic et al. (2016), and BAB factor of Frazzini and Pedersen (2014).
We also report t-statistics for these alphas. Data contain period between January 1963 and December 2018.
In each window, we use all the CRSP stocks that have at least 48 monthly observations, and we exclude
penny stocks with prices less than 1$.

τ Low 2 3 4 5 6 7 8 9 High H - L t-stat α t-stat

Equal-weighted
0.10 4.88 7.89 8.20 9.19 8.75 9.47 9.99 10.65 10.71 9.63 4.74 2.76 4.80 2.55
0.15 4.41 7.78 8.88 8.95 9.59 9.39 10.11 10.36 10.10 9.79 5.38 3.07 5.60 3.04
0.20 4.37 7.43 8.82 9.33 9.10 10.14 10.11 10.06 9.86 10.12 5.74 3.18 6.36 3.28
0.30 4.41 7.54 8.49 9.15 9.87 9.71 10.15 10.28 10.16 9.59 5.19 3.10 5.76 3.37
0.40 4.65 8.11 8.82 9.39 9.05 9.64 10.22 10.35 9.90 9.22 4.57 2.95 4.79 3.01
0.50 6.77 9.01 9.95 9.38 9.29 9.48 9.61 9.73 9.11 7.02 0.25 0.14 -0.84 -0.41
0.60 6.35 9.25 9.77 9.16 9.66 9.75 9.84 9.20 8.96 7.42 1.07 0.63 -0.80 -0.43
0.70 6.28 8.84 9.86 9.11 9.19 9.01 9.54 9.40 9.57 8.55 2.27 1.61 0.15 0.09
0.80 8.05 9.34 9.43 9.02 8.84 9.39 9.23 8.91 8.78 8.36 0.32 0.20 -1.67 -0.96
0.85 8.19 9.13 9.54 8.97 9.02 9.40 9.61 8.88 8.57 8.03 -0.16 -0.10 -1.83 -0.99
0.90 8.14 9.69 9.40 8.89 9.11 9.58 9.32 8.89 8.87 7.45 -0.69 -0.38 -2.17 -1.13

Value-weighted
0.10 4.08 5.07 5.98 6.17 6.47 7.02 6.83 8.60 9.46 8.18 4.10 1.75 3.28 1.41
0.15 3.77 4.63 6.82 5.60 7.36 6.15 7.69 7.18 9.17 8.99 5.22 2.05 5.47 2.20
0.20 2.87 6.31 6.63 5.65 6.48 7.12 7.15 7.40 8.91 10.14 7.27 2.78 8.57 3.13
0.30 3.17 6.40 5.73 6.15 6.67 7.35 6.92 6.97 7.78 9.39 6.22 2.33 7.53 2.67
0.40 3.41 6.43 5.44 6.78 6.47 7.24 6.76 6.74 7.28 8.27 4.86 2.03 7.17 3.02
0.50 3.89 5.44 5.37 5.45 6.36 7.28 7.65 6.36 4.89 7.08 3.19 1.42 3.72 1.42
0.60 3.32 6.45 5.28 4.68 7.43 6.09 8.63 6.79 6.14 6.09 2.77 1.21 1.47 0.61
0.70 3.90 5.65 7.58 7.48 6.94 6.47 6.29 6.20 5.94 8.40 4.51 1.92 3.50 1.34
0.80 4.29 7.17 6.46 5.84 6.88 6.77 6.39 6.18 5.17 6.96 2.68 1.09 2.31 0.93
0.85 5.09 6.80 6.19 6.61 6.54 6.77 6.75 6.14 5.54 6.33 1.24 0.50 1.41 0.57
0.90 4.62 6.71 6.47 5.90 6.42 7.27 6.19 5.69 6.07 5.05 0.43 0.16 0.49 0.18

with the results from the Fama-MacBeth regressions and suggests that only the exposure to

the lower tail common movements is priced in the cross-section.

Moreover, to formally assess whether there is a compensation for bearing a risk of high

exposure to the common movements in various parts of distributions of idiosyncratic returns,

we present returns of high minus low portfolios. We obtain these returns as a difference be-

tween returns of portfolios with the highest CIQ(τ) betas and portfolios with the lowest

CIQ(τ) betas. These portfolios are zero-cost portfolios and capture the risk premium as-

sociated with specific τ joint movements of idiosyncratic returns. As expected, we observe

a significant positive premium for the difference portfolios only for τ being less or equal to

0.4. These premiums are both economically and statistically significant. In the case of the

equal-weighted portfolios, the premium for CIQ(0.2) factors is 5.74% on the annual basis

with a t-statistic of 3.18. The premiums are very similar in the case of the value-weighted

portfolios – e.g., for τ = 0.2 the premium is 7.27 with t-statistic of 2.78. This slightly

lower significance in the case of the value-weighted portfolios may be partially caused by the
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Figure 2: Performance of the CIQ(τ) portfolios. The figure depicts cumulative log-return of high minus
low portfolios obtained from sorting the stocks into decile portfolios based on their exposure to the CIQ(τ)
factors and buying the portfolio with high exposure and selling the portfolio with low exposure. Returns of
the portfolios are value-weighted.
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fact that the value-weighted portfolios possess a higher concentration, which leads to more

volatile returns.

To make sure that the estimated premiums cannot be explained by exposure to other

risks previously proposed in the literature, we regress the returns of the high minus low

portfolios on four factors of Carhart (1997) and CIV shocks of Herskovic et al. (2016) and

BAB factor of Frazzini and Pedersen (2014) and report corresponding annualized 6-factor

alphas. From the results, we can see that the proposed factors do not capture the positive

premium associated with the zero-cost portfolios. For the equal-weighted portfolio with

τ = 0.2, the estimated annualized alpha is 6.36% with t-statistic of 3.28, for value-weighted

portfolios it is 8.57% premium with t-statistics being equal to 3.13.

To visually inspect the performance of the value-weighted CIQ(τ) portfolios, we present

in Figure 2 cumulative log-return of the value-weighted high minus low portfolios for every τ .

Consistent with the numerical results, only the portfolios based on CIQ factors for τ ≤ 0.4

provide strong performance during the sample period.

Next, in Table 12, we look at the performance of the CIQ(τ) sorted portfolios captured by

the following twelve-month value-weighted returns. Each month, we construct portfolios as

in the previous case. Instead of saving the next one-month return of the sorted portfolios, we

record a twelve-month return, which follows after the formation period. Due to the passive

approach for the following 12-month period, we focus on the value-weighted performance

of the portfolios. We observe returns consistent with the results obtained using one-month

returns. The high minus low portfolios with τ = 0.2 yield 6.62% (t = 2.43). The other
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Table 12: Portfolio results with 1-year holding period. The table summarizes annualized out-of-sample
returns of the CIQ(τ) portfolios which are held for one year after their formation. The returns are value-
weighted.

τ Low 2 3 4 5 6 7 8 9 High H - L t-stat α t-stat

0.10 2.83 4.37 6.01 6.25 5.91 5.77 6.74 9.18 9.42 9.17 6.35 2.64 5.49 1.82
0.15 2.78 4.72 6.09 5.81 6.54 5.92 7.87 8.70 9.10 8.95 6.17 2.05 5.49 1.43
0.20 2.60 5.23 6.04 7.08 6.29 5.56 7.58 8.73 8.88 9.22 6.62 2.43 6.44 2.29
0.30 2.93 5.00 5.90 6.95 6.48 6.22 7.10 7.18 8.73 8.30 5.37 1.87 7.35 2.43
0.40 3.34 4.53 6.37 6.43 6.03 6.69 6.43 7.86 7.46 6.33 2.99 0.87 5.31 1.60
0.50 4.82 4.61 5.06 5.46 6.18 8.64 7.42 6.47 5.58 6.72 1.90 0.78 0.75 0.25
0.60 4.68 5.12 5.22 5.96 5.85 7.05 8.00 6.65 6.26 6.11 1.43 0.73 -0.79 -0.29
0.70 2.88 6.04 5.82 6.56 7.25 6.80 6.95 6.48 6.56 6.48 3.60 2.31 3.67 1.16
0.80 4.02 6.53 5.12 6.71 7.15 6.93 7.26 6.59 5.89 4.22 0.20 0.09 -0.36 -0.09
0.85 4.27 5.78 5.46 6.63 7.58 7.08 6.99 6.91 5.65 4.92 0.65 0.24 -0.96 -0.24
0.90 5.06 6.13 5.10 6.33 6.99 7.12 6.60 6.74 5.78 4.63 -0.43 -0.18 -2.78 -0.74

risk factors cannot explain these premiums as the 6-factor alphas stay economically and

statistically significant.

Due to the fact that only the exposures to the lower tail common movements are priced,

the previous results suggest that the CIQ(τ) risks are not driven by the effect of the common

volatility. If it were the case that the volatility is the main driver of the obtained results,

we would observe that both exposures to the lower and upper parts of the joint movements

are priced, which is not the case. But to explicitly control for the effect of the common

idiosyncratic volatility, we perform dependent bivariate sorts by double sorting on betas for

PCA-SQ factor and betas for the ∆CIQ(τ) factors. Every month, we first sort the stocks

into ten portfolios based on their PCA-SQ betas. Then, within each of the PCA-SQ-sorted

portfolios, we sort the stocks into ten portfolios based on their CIQ(τ) betas. Finally, for

each CIQ(τ) portfolio, we collapse all the corresponding CIV portfolios into one CIQ(τ)

portfolio. This procedure yields single-sorted portfolios which vary in their CIQ(τ) betas

but possess approximately equal PCA-SQ betas. The obtained results summarizes Table 13.

For the equal-weighted portfolios, we see that the risk premium captured by the returns of

the high minus low portfolios for τ ≤ 0.4 remains significant with an annualized return of

4.48% (t = 3.14) for τ = 0.2. In case of the value-weighted portfolios, the return remain close

to the equal-weighted case with return of 4.51% for τ = 0.2 (t = 2.21.). These observations

suggest that the CIQ(τ) risk premium captures risk that is not explained to the common

volatility as described by the PCA-SQ model.

The portfolio results show that holding risk associated with the common idiosyncratic

downside risk is rewarded by a significant premium. On the other hand, exposure to the

common idiosyncratic upside potential is not related to robust pricing consequences. In

Appendix A in Tables 17, 19, and 18, we provide results of the same analysis using five

portfolios instead of ten. The results are qualitatively very similar to the results from the
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Table 13: Dependent bivariate sorts on CIQ(τ) and PCA-SQ exposures. The table contains annualized
out-of-sample excess returns of ten portfolios sorted on the exposure to the ∆CIQ(τ) and PCA-SQ factor.
Exposure to the PCA-SQ factor are approximately same across the portfolios. We use all the CRSP stocks
that have at least 48 monthly observations in each 60-month window. We report returns of the high minus
low (H - L) portfolios, their t-statistics, and annualized 6-factor alphas with respect to the four factors of
Carhart (1997), CIV shocks of Herskovic et al. (2016), and BAB factor of Frazzini and Pedersen (2014). We
also report t-statistics for these alphas. Data contain period between January 1963 and December 2018. In
each window, we use all the CRSP stocks that have at least 48 monthly observations, and we exclude penny
stocks with prices less than 1$.

τ Low 2 3 4 5 6 7 8 9 High H - L t-stat α t-stat

Equal-weighted
0.10 6.09 7.97 7.92 9.28 9.06 9.71 9.37 9.51 10.35 10.13 4.05 3.01 4.04 2.71
0.15 6.09 7.76 8.73 8.87 9.03 8.93 10.16 9.51 10.28 10.02 3.92 2.75 3.85 2.52
0.20 5.63 8.49 8.14 9.01 9.46 9.27 9.53 9.70 10.08 10.11 4.48 3.14 4.60 2.83
0.30 5.43 8.40 8.30 8.95 9.18 9.92 9.26 9.76 10.30 9.94 4.51 3.19 4.34 2.83
0.40 5.57 8.76 8.64 8.94 9.10 9.40 9.22 10.10 10.09 9.60 4.03 2.70 3.60 2.26
0.50 6.77 9.69 9.26 9.66 9.37 9.56 9.20 9.31 9.09 7.48 0.71 0.44 -0.10 -0.05
0.60 6.16 10.00 9.56 9.35 9.63 9.11 9.93 8.70 9.32 7.66 1.49 0.96 0.14 0.09
0.70 6.52 8.93 9.40 9.65 8.81 9.07 9.34 9.37 9.19 9.13 2.61 2.05 1.44 1.06
0.80 7.74 9.21 9.36 9.34 8.94 8.93 8.47 9.11 9.41 8.87 1.14 0.89 -0.20 -0.14
0.85 7.68 9.10 9.06 8.86 9.16 9.03 8.99 9.61 9.02 8.86 1.18 0.87 0.11 0.07
0.90 7.89 9.45 8.89 9.14 9.10 9.15 9.25 8.81 9.17 8.54 0.65 0.45 -0.67 -0.42

Value-weighted
0.10 5.29 5.82 5.55 6.07 5.99 5.53 6.95 8.12 8.23 9.80 4.52 2.19 4.13 2.05
0.15 4.67 6.12 6.37 5.26 5.85 6.43 7.30 7.18 8.11 9.39 4.72 2.25 4.68 2.34
0.20 5.07 7.21 4.98 6.92 5.44 6.08 6.68 7.12 8.12 9.58 4.51 2.21 4.86 2.24
0.30 5.02 7.02 5.90 6.50 5.69 6.38 6.73 5.82 8.31 9.39 4.37 2.07 4.59 2.07
0.40 4.30 7.02 5.77 7.04 5.49 6.64 6.44 6.80 8.11 8.12 3.82 1.79 4.36 2.14
0.50 5.68 4.80 5.62 6.10 6.48 5.73 7.78 6.83 7.39 5.35 -0.33 -0.15 -0.85 -0.36
0.60 4.58 5.94 5.69 5.02 6.87 5.48 7.78 7.26 7.93 6.09 1.51 0.72 -0.18 -0.09
0.70 6.06 6.11 6.97 6.68 5.82 7.08 5.77 5.94 7.03 7.59 1.52 0.72 1.24 0.59
0.80 4.64 7.20 6.13 5.54 6.63 7.16 5.28 5.47 6.90 7.14 2.50 1.21 1.56 0.71
0.85 4.62 6.71 6.46 6.13 6.58 5.48 6.22 6.78 6.82 6.36 1.74 0.89 0.56 0.27
0.90 3.65 8.45 6.12 5.74 5.33 6.92 6.01 7.41 5.90 7.13 3.48 1.59 1.64 0.74

above, confirming the robustness of our claim that the exposure to the common left tail

events is priced in the cross-section of returns.

Finally, we also repeat the exercise on the simulated universe of stocks. We simulate

stocks from location-scale model in order to see that risk factors will not be quantile depen-

dent, and will all be coming from the volatility. At the same time the exercise will show that

choice of small sample in the moving window does not bias the results. Detailed discussion

in Appendix A.1 shows that the premium associated with exposures to the different quantile

levels on simulated data are the same to the exposures on the PCA-SQ factors in magni-

tude. The risk premiums have identical significance, and is constant (with opposite sign

for downside and upside) over the quantiles. Hence if the returns were generated from the

location-scale model, then quantile risk would be equivalent across quantiles, and it would

be captured by the volatility risk.
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Table 14: Portfolios sorted on relative CIQ(τ) betas. The table contains annualized out-of-sample excess
returns of ten portfolios sorted on relative CIQ(τ) betas. We report returns of the high minus low (H -
L) portfolios, their t-statistics, and annualized 6-factor alphas with respect to the four factors of Carhart
(1997), CIV shocks of Herskovic et al. (2016), and BAB factor of Frazzini and Pedersen (2014). We also
report t-statistics for these alphas. Data contain period between January 1963 and December 2018. In each
window, we use all the CRSP stocks that have at least 48 monthly observations, and we exclude penny stocks
with prices less than 1$.

τ Low 2 3 4 5 6 7 8 9 High H - L t-stat α t-stat

Equal-weighted
0.10 5.00 7.68 8.41 8.97 8.83 9.55 9.80 10.73 10.56 9.81 4.81 2.71 4.66 2.37
0.15 4.32 7.89 8.76 9.13 9.55 9.19 10.33 10.08 10.05 10.04 5.73 3.16 5.75 2.93
0.20 4.37 7.54 8.73 9.19 8.93 9.85 10.63 10.09 9.71 10.31 5.94 3.22 6.45 3.17
0.30 4.51 7.01 8.43 9.31 10.06 9.66 10.19 10.11 10.00 10.08 5.57 3.17 5.96 3.28
0.40 4.57 8.03 8.52 9.22 9.75 9.85 9.33 9.96 10.43 9.69 5.11 3.22 5.14 3.20
0.50 6.77 9.01 9.95 9.38 9.29 9.48 9.61 9.73 9.11 7.02 0.25 0.14 -0.84 -0.41
0.60 7.52 8.96 8.37 9.53 9.18 10.06 8.89 9.76 9.45 7.64 0.13 0.09 -1.27 -0.84
0.70 6.55 9.44 9.47 8.58 9.33 8.87 9.52 9.19 9.76 8.63 2.09 1.56 0.18 0.12
0.80 8.25 9.09 9.40 8.99 8.68 9.41 9.39 8.89 9.09 8.15 -0.10 -0.07 -1.94 -1.17
0.85 8.30 9.37 9.20 9.32 9.10 8.81 9.46 9.30 8.65 7.82 -0.48 -0.29 -1.88 -1.03
0.90 8.38 9.19 9.54 9.13 9.18 9.53 9.10 9.07 9.00 7.23 -1.15 -0.63 -2.45 -1.31

Value-weighted
0.10 3.83 4.53 6.11 6.53 6.49 6.33 6.95 8.51 9.70 8.48 4.66 1.97 2.96 1.29
0.15 4.00 4.72 6.40 6.60 7.20 6.30 7.03 7.39 9.33 9.12 5.11 2.04 4.75 1.94
0.20 2.79 6.25 6.36 6.38 6.61 7.11 7.12 7.23 8.59 9.68 6.89 2.72 7.12 2.74
0.30 3.47 6.24 5.64 6.02 7.85 6.96 6.89 6.53 8.18 9.66 6.19 2.33 6.83 2.50
0.40 3.69 6.37 6.24 6.53 7.16 6.83 6.09 6.27 7.96 8.99 5.30 2.06 7.35 2.87
0.50 3.89 5.44 5.37 5.45 6.36 7.28 7.65 6.36 4.89 7.08 3.19 1.42 3.72 1.42
0.60 5.93 5.56 5.97 5.30 5.70 5.80 6.53 7.13 7.77 6.82 0.89 0.39 0.23 0.08
0.70 4.40 6.63 5.92 7.42 6.85 7.24 5.54 5.88 6.68 7.34 2.94 1.26 2.02 0.77
0.80 5.38 7.48 5.50 6.67 6.78 6.74 6.51 6.12 5.01 6.45 1.07 0.43 0.65 0.25
0.85 5.07 7.05 6.70 6.34 6.51 6.51 6.75 6.29 5.63 5.54 0.48 0.18 0.75 0.29
0.90 4.96 6.84 6.30 6.58 6.26 6.76 6.87 5.37 5.72 5.57 0.62 0.22 1.53 0.55

4.3 Beyond CIQ(τ) Betas

To specifically capture additional information beyond median dependence from the lower

and upper parts of the distribution, respectively, we define relative CIQ betas as

βreli (τ) := βi(τ)− βi(0.5).

The results of the portfolio sorts based on relative betas are summarized in Table 14. These

results are in the spirit of the CIQ betas’ results presented above. The high minus low

portfolio sorted on βrel(0.2) yields annual 5.94% excess return (t = 3.22) with 6-factor

α = 6.45 (t = 3.17) for the equal-weighted portfolio. In case of the value-weighted portfolios,

we obtain annual return of 6.89% (t = 2.72) and α = 7.12 (t = 2.74).

Because there is a little theory on which τ to choose when investing based on the exposure

to the CIQ(τ) factors, we aim to aggregate the information from downside and upside factors

into compressed measures. To summarize the dependence in the whole lower or upper part
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of the factor structure, we define downside and upside CIQ betas as

βdowni :=
∑

τ∈τdown

F
(
βi(τ)

)
βupi :=

∑
τ∈τup

F
(
βi(τ)

)
where F

(
βi(τ)

)
= Rank(βi(τ))

Nt+1
. We obtain the downside and upside CIQ betas as an average

cross-sectional rank of the CIQ betas for downside and upside τs, respectively. Results of the

portfolio sorts based on those betas are summarized in Table 15. We can see that the long-

short portfolios sorted on downside CIQ betas provide significant excess returns of 5.19%

(t = 3.02) and 6.44% (t = 2.48) annual returns using equal- and value-weighted schemes,

respectively. On the other hand, an investment strategy based on upside beta does not yield

significant abnormal returns using either weighting approach.

To summarize the relative betas through the whole downside or upside parts of the joint

structure, we introduce downside and upside relative betas

βdown,reli :=
∑

τ∈τdown

F
(
βreli (τ)

)
,

βup,reli :=
∑
τ∈τup

F
(
βreli (τ)

)
,

which are obtained as a mean cross-sectional rank of the relative betas associated with the

exposure to the downside or upside CIQ(τ) factors, respectively. The associated returns are

also summarized in Table 15. Similarly as in the case of the relative betas, downside relative

betas provide investment strategy with significant abnormal returns of 6.02% (t = 3.25) and

7.40% (t = 2.90) on an annual basis using equal- or value-weighted returns, respectively.

The returns of the portfolios based on relative upside betas remain insignificant.

5 Conclusion

We investigate the pricing implications of the exposures to the common idiosyncratic quan-

tile factors. These factors capture non-linear common movements in various parts of the

distributions across a large panel of stocks. Similarly, as the quantile regression extends the

classical linear regression, our quantile factor model of asset returns extends the approximate

factor models used in empirical asset pricing literature. We show that the downside quantile

factors can robustly predict the market return out-of-sample. We also provide evidence that

the expected returns are associated with the exposures to the downside common movements
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Table 15: Ten univariate sorted portfolios on combination CIQ betas. The table contains annualized out-
of-sample excess returns of ten portfolios sorted on downside (upside) and relative downside (upside) CIQ
betas. We use all the CRSP stocks that have at least 48 monthly observations in each 60-month window.
We report returns of the high minus low (H - L) portfolios, their t-statistics, and annualized 6-factor alphas
with respect to the four factors of Carhart (1997), CIV shocks of Herskovic et al. (2016), and BAB factor
of Frazzini and Pedersen (2014). We also report t-statistics for these alphas. Data contain period between
January 1963 and December 2018. In each window, we use all the CRSP stocks that have at least 48 monthly
observations, and we exclude penny stocks with prices less than 1$.

Weighting Variable Low 2 3 4 5 6 7 8 9 High H - L t-stat α t-stat

Equal

βdown 4.71 7.20 8.54 9.23 9.48 10.20 9.26 10.49 10.34 9.90 5.19 3.02 5.66 3.19
βup 7.73 9.45 9.54 8.73 9.23 9.08 9.43 9.30 8.56 8.30 0.57 0.36 -1.43 -0.79

βdown,rel 4.33 7.68 8.47 8.97 9.71 9.78 10.10 9.90 10.07 10.34 6.02 3.25 6.43 3.26
βup,rel 8.58 9.04 8.89 8.87 9.26 9.05 9.07 9.03 9.24 8.31 -0.27 -0.18 -2.00 -1.23

Value

βdown 3.08 6.41 5.90 5.85 5.72 8.06 6.96 7.59 8.31 9.52 6.44 2.48 7.15 2.88
βup 4.72 6.57 5.02 6.59 7.11 7.21 6.53 5.57 5.50 7.51 2.79 1.17 2.38 0.96

βdown,rel 2.97 6.35 5.79 6.47 6.85 6.73 7.53 6.61 8.38 10.37 7.40 2.90 7.52 2.91
βup,rel 5.60 7.08 6.71 5.39 7.38 6.51 6.58 6.10 5.36 6.64 1.04 0.43 0.32 0.13

in contrast to the upside movements. Importantly, the quantile dependent factors provides

richer information to investors in comparison to other downside risk or volatility factors. We

perform various robustness checks to show that these results are not attributable to other

previously proposed risk factors. Most notably, we aim to prove that the common volatility

does not drive the results.

Future research may focus on better interpretability of the quantile factor models using

the characteristics-based quantile factor model proposed by Chen et al. (2023). This investi-

gation may identify which stock characteristics are related to exposure to common extreme

events. From a theoretical perspective, future endeavors could explore the link between the-

oretical quantile asset pricing models, such as the model of Ramos et al. (2020), and quantile

factor models. Furthermore, an important direction may extend the arbitrage pricing theory

into the quantile domain in the spirit of Renault et al. (2022).
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A Appendix A

Table 16: Correlations between CIQ(τ) and other factors. The table reports correlations between CIQ(τ)
factors and factors related to the asymmetric and variance risk. Data contain the period between January
1963 and December 2018.

variable / τ 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

Panel A: Levels of factors

PCA-SQ -0.68 -0.66 -0.59 -0.47 -0.23 0.06 0.12 0.44 0.61 0.65 0.70
CIV -0.29 -0.26 -0.24 -0.16 -0.03 0.04 0.07 0.19 0.28 0.28 0.30
TR 0.07 0.07 0.06 0.02 -0.04 -0.02 -0.04 -0.19 -0.19 -0.19 -0.17
VRP 0.04 0.05 0.06 0.07 0.10 -0.08 -0.03 0.03 0.03 0.00 0.01
VIX -0.17 -0.15 -0.11 -0.01 0.16 0.08 0.13 0.30 0.33 0.30 0.28

Panel B: Differences of factors

PCA-SQ -0.54 -0.50 -0.44 -0.32 -0.11 0.17 0.17 0.35 0.51 0.55 0.60
CIV -0.20 -0.17 -0.17 -0.12 -0.06 0.06 0.07 0.11 0.15 0.15 0.13
TR 0.11 0.09 0.09 0.04 -0.03 -0.03 -0.03 -0.24 -0.26 -0.27 -0.25
VRP 0.14 0.12 0.10 0.07 0.02 -0.05 -0.03 -0.06 -0.07 -0.11 -0.10
VIX 0.20 0.23 0.23 0.22 0.22 0.07 0.10 0.10 0.05 0.01 -0.06
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Table 17: Portfolios sorted on the exposure to the ∆CIQ(τ) factors. The table contains annualized out-of-
sample excess returns of five portfolios sorted on the exposure to the ∆CIQ(τ) factors. We use all the CRSP
stocks that have at least 48 monthly observations in each 60-month window. We report returns of the high
minus low (H - L) portfolios, their t-statistics, and annualized 6-factor alphas with respect to the four factors
of Carhart (1997), CIV shocks of Herskovic et al. (2016), and BAB factor of Frazzini and Pedersen (2014).
We also report t-statistics for these alphas. Data contain period between January 1963 and December 2018.
In each window, we use all the CRSP stocks that have at least 48 monthly observations, and we exclude
penny stocks with prices less than 1$.

τ Low 2 3 4 High H - L t-stat α t-stat

Equal-weighted
0.10 6.38 8.69 9.11 10.32 10.17 3.78 2.59 4.36 2.79
0.15 6.10 8.91 9.49 10.23 9.94 3.85 2.58 4.65 3.05
0.20 5.90 9.08 9.62 10.09 9.99 4.08 2.78 5.20 3.47
0.30 5.97 8.82 9.79 10.21 9.88 3.90 2.81 4.89 3.56
0.40 6.38 9.11 9.34 10.29 9.56 3.19 2.55 4.00 3.22
0.50 7.89 9.67 9.38 9.67 8.07 0.18 0.14 -0.04 -0.03
0.60 7.80 9.46 9.70 9.52 8.19 0.39 0.30 -0.55 -0.42
0.70 7.56 9.49 9.10 9.47 9.06 1.50 1.31 0.29 0.22
0.80 8.69 9.23 9.11 9.07 8.57 -0.12 -0.10 -1.37 -0.98
0.85 8.66 9.26 9.21 9.24 8.30 -0.36 -0.26 -1.59 -1.07
0.90 8.91 9.14 9.35 9.11 8.16 -0.75 -0.48 -1.83 -1.22

Value-weighted
0.10 4.74 6.10 6.63 7.58 9.16 4.42 2.20 4.26 2.24
0.15 4.36 6.13 6.71 7.38 9.08 4.72 2.39 5.40 2.90
0.20 4.98 6.07 6.75 7.15 9.07 4.09 2.09 5.39 3.05
0.30 5.06 5.87 7.00 6.82 8.03 2.97 1.57 4.43 2.59
0.40 5.14 5.96 6.83 6.71 7.57 2.42 1.36 4.40 2.53
0.50 4.67 5.44 6.80 7.07 5.43 0.77 0.46 0.90 0.45
0.60 5.24 4.85 6.51 7.64 6.11 0.87 0.50 -0.16 -0.09
0.70 4.96 7.37 6.52 6.08 6.75 1.79 1.06 1.48 0.84
0.80 6.11 6.13 6.69 6.28 5.99 -0.11 -0.06 -0.49 -0.28
0.85 6.12 6.31 6.58 6.50 5.92 -0.20 -0.11 -0.39 -0.22
0.90 5.92 6.18 6.91 5.90 5.86 -0.06 -0.03 -0.20 -0.11
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Table 18: Dependent bivariate sorts on CIQ(τ) and PCA-SQ exposures. The table contains annualized
out-of-sample excess returns of five portfolios sorted on the exposure to the ∆CIQ(τ) and PCA-SQ factor.
Exposure to the PCA-SQ factor are approximately same across the portfolios. We use all the CRSP stocks
that have at least 48 monthly observations in each 60-month window. We report returns of the high minus
low (H - L) portfolios, their t-statistics, and annualized 6-factor alphas with respect to the four factors of
Carhart (1997), CIV shocks of Herskovic et al. (2016), and BAB factor of Frazzini and Pedersen (2014). We
also report t-statistics for these alphas. Data contain period between January 1963 and December 2018. In
each window, we use all the CRSP stocks that have at least 48 monthly observations, and we exclude penny
stocks with prices less than 1$.

τ Low 2 3 4 High H - L t-stat α t-stat

Equal-weighted
0.10 6.91 8.58 9.39 9.77 10.02 3.11 2.78 3.22 2.57
0.15 7.03 8.64 9.39 9.68 9.93 2.90 2.57 2.97 2.44
0.20 6.84 8.65 9.61 9.46 10.12 3.28 2.91 3.63 2.91
0.30 6.84 8.55 9.81 9.43 10.04 3.20 2.86 3.42 2.84
0.40 7.03 8.98 9.19 9.85 9.63 2.60 2.29 2.69 2.22
0.50 8.07 9.61 9.35 9.37 8.27 0.20 0.16 -0.33 -0.25
0.60 8.07 9.59 9.35 9.30 8.36 0.30 0.24 -0.75 -0.60
0.70 7.59 9.68 8.90 9.31 9.19 1.59 1.59 0.93 0.86
0.80 8.28 9.58 8.81 8.95 9.06 0.78 0.80 -0.03 -0.03
0.85 8.36 9.05 8.97 9.63 8.67 0.30 0.31 -0.50 -0.44
0.90 8.49 9.10 9.27 9.23 8.59 0.11 0.09 -0.85 -0.70

Value-weighted
0.10 5.43 5.79 6.05 6.96 8.58 3.15 2.07 2.20 1.68
0.15 5.58 6.15 5.90 7.25 7.77 2.19 1.43 1.76 1.24
0.20 6.08 5.88 5.97 6.80 7.91 1.83 1.30 1.95 1.42
0.30 6.21 6.09 6.25 6.22 8.04 1.83 1.23 2.11 1.50
0.40 5.56 6.56 6.15 6.75 7.08 1.51 0.96 1.99 1.30
0.50 5.15 5.58 6.25 7.02 6.42 1.27 0.80 0.28 0.16
0.60 5.55 5.27 6.08 7.41 7.22 1.67 0.99 0.19 0.11
0.70 6.01 6.41 6.58 5.68 7.56 1.55 0.98 0.55 0.39
0.80 5.77 6.12 6.28 6.15 6.65 0.88 0.59 -0.56 -0.37
0.85 5.81 6.12 6.53 6.29 6.48 0.67 0.49 -0.59 -0.40
0.90 5.15 6.63 6.36 6.49 6.71 1.56 0.97 0.05 0.03

Table 19: Portfolio results with 1-year holding period. The table summarizes returns of the CIQ(τ) portfolios
which are held for one year after their formation. The returns are value-weighted.

τ Low 2 3 4 High H - L t-stat α t-stat

0.10 3.71 6.13 5.82 8.00 9.41 5.70 2.56 6.49 1.70
0.15 4.01 5.79 6.15 8.21 9.12 5.11 2.28 6.69 1.88
0.20 4.15 6.48 5.80 8.10 8.98 4.83 2.25 7.00 1.93
0.30 4.14 6.40 6.34 7.25 8.40 4.26 2.06 5.14 1.33
0.40 3.97 6.44 6.18 7.10 7.11 3.15 1.73 2.81 0.91
0.50 4.43 5.19 7.40 6.90 5.94 1.51 1.13 -1.32 -0.75
0.60 4.80 5.33 6.37 7.21 6.26 1.46 1.12 -2.38 -1.47
0.70 5.17 6.11 6.94 6.57 6.37 1.20 0.91 -0.81 -0.60
0.80 5.82 5.86 6.85 6.92 5.21 -0.61 -0.38 -2.45 -1.92
0.85 5.45 6.14 7.11 6.83 5.21 -0.25 -0.13 -2.49 -1.84
0.90 5.82 5.94 6.99 6.46 5.32 -0.50 -0.27 -2.36 -1.52
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A.1 Simulation Study

We present a simulation exercise to illustrate how the CIQ(τ) premiums would look like if

the driving force behind them were simply common volatility. We simulate the returns from

the following model

ri,t = αi + βirm,t + γi(Vt − V̄ )− γiλV + ei,t (18)

where Vt is the common variance factor, and the variance of the idiosyncratic error follows

the factor structure proposed by Ding et al. (2022)

ei,t =
√
Vi,tzi,t,

Vi,t = Vt exp(µi + σiui,t) = VtṼi,t,

zi,t, ui,t ∼ i.i.d.N(0, 1).

(19)

Time-series variation of the returns drive two common factors – market factor, rm,t, and

variance factor Vt. The expected return of a stock is then equal to

E[ri] = αi + βiE[rm] + γiλ
V . (20)

We assume that the market factor follows a simple GARCH(1,1) process of Bollerslev

(1986), which we fit on the market return from the empirical analysis. We assume that the

log of the variance factor follows a modified HAR model of Corsi (2009)

log Vt+1 = θ0 + θmx
m
t + θyx

y
t + vt+1

vt+1 ∼ i.i.d.N(0, σ2
v)

(21)

where xmt and xyt are the previous month’s log-variance and average log-variance over the last

12-month period, respectively. The common variance process is approximated by the cross-

sectional average of the squared residuals from the time series regression of stock returns on

the market factor. We fit the model from equation 21 on this time series. When simulating

this time series, we initialize the process by randomly selecting 12 consequent observations

of the common variance process estimated from the data and using those observations for

iterating forward.

We calibrate the simulation setting to match the CRSP data sample we employ in the

empirical investigation. We estimate stock-level market beta, βi, using time-series regression

of stock return on the market return. Exposure to the common variance, γi, is estimated by

regressing the stock return on the estimate of the common variance process. Price of risk
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associated with the variance exposure, λV is chosen to be equal to 3× 10−3.20 We estimate

stock-level parameters of the idiosyncratic error variance–µi, σi–as the sample mean and

standard deviation of log Ṽi,t. To approximate the Ṽi,t, we use squared residuals from the

time-series regression of the stock return on the market return. Then, to simulate these

parameters, we approximate their distribution by normal distribution, with the mean equal

to the estimates’ cross-sectional average and the variance equal to the cross-sectional variance

of the estimates.

We simulate the panel of 2,500 stocks with 120 observations. We repeat the simulation

1,000 times. Each time, we simulate stock returns by randomly choosing parameters for the

stock-level process from the normal distribution with mean and variance corresponding to

their sample counterparts. We remove the common time variation in stock returns by first

forming the common linear factor

ft =
1

N

N∑
i=1

ri,t, t = 1, . . . , T (22)

and then regressing the returns on this factor

ri,t = αi + β̂ift + êi,t, (23)

which yields the residuals êi,t. Those residuals are then used to form the common volatility

and quantile factors. We construct the volatility factor as the first principal component of

those squared residuals. ∆CIQ(τ) factors are estimated as discussed in Section 2. Exposures

to those factors are then estimated using univariate time-series regressions of stock returns

on the increments of the volatility or quantile factors, respectively.

Similarly, as in the empirical investigation, we sort stocks into decile portfolios based

on their estimated exposure to the factors to infer the associated risk premiums. We proxy

the premiums by computing high minus low returns of the portfolios. Table 20 reports the

average premiums for all the CIQ(τ) factors. We observe that the premium is positive for

the downside values of τ , negative for the upside ones and insignificant for the median.

The magnitude of the premiums is comparable across all τ and, on average, in absolute

value equal to 9.44%. The premium associated with the exposure to the PCA-SQ factor is

-6.09%. We also compute associated t-statistics as a ratio between average premium and its

standard deviation across all the simulations. All the premiums except for the median value

20This value corresponds to approximately 6% annual high minus low premium obtained from ten port-
folios portfolios sorted on the exposure to the common variance. The choice of this value is not essential for
the results that we present here.

44



Table 20: Simulated risk premiums. The table contains risk average premiums computed from high minus
low returns of decile portfolios sorted on exposure to the CIQ(τ) risks. We simulate the returns using
common variance factor model proposed by Ding et al. (2022). We simulate panel of 2,500 stocks with
120 monthly observations. We perform the simulation 1,000 times. t-statistics are obtained by dividing
the average premium by its standard deviation. We also report proportion of rejections of non-significance
of CIQ(τ) betas from multivariate cross-sectional regressions of average returns on those betas and market
betas.

τ Premium t-stat Rejections

0.10 9.34 2.62 0.96
0.15 9.37 2.56 0.96
0.20 9.38 2.51 0.96
0.30 9.50 2.54 0.97
0.40 9.37 2.26 0.96
0.50 0.35 0.03 0.96
0.60 -9.61 -2.70 0.96
0.70 -9.60 -2.72 0.96
0.80 -9.52 -2.67 0.96
0.85 -9.42 -2.58 0.96
0.90 -9.35 -2.56 0.96

are significant, with values around 2.6 in absolute value. The t-value associated with the

PCA-SQ factor is -2.33. Next, we present the proportion of rejections of non-significance

of CIQ(τ) betas at a 5% significance level from multivariate cross-sectional regressions of

average returns on those betas and market betas. We can see that the proportions are

virtually identical for both upside and downside betas of around 96%. The ratio for the

PCA-SQ betas is 90%.

As we can see from the results, if there was a common volatility element present in

the return, which is compensated in the cross-section, the CIQ(τ) risk premium would be

symmetrical around the median. Moreover, the exposure to the PCA-SQ factor would be

priced in this case. Overall, the evidence from the simulation exercise suggests that the

CIQ(τ) risk premiums we observe in the data are not attributable to the common volatility

compensation.
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